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This study explores a novel procedure for obtaining quantitative information 
on the mechanical properties of the fiber-matrix interface in composite materi- 
als. The method, based on lattice discretization of a medium, simulates actual 
experiments in detail, including fiber breakage, matrix yield and/or cracking, 
and interface failure. The paper concentrates on two experiments performed 
commonly, the so-called fragmentation test for metal matrix, and the pushout/ 
pullout test for metal as well as ceramic matrix composites. Based on the docu- 
mented capability of the method to simulate actual experimental data, reliable 
values of (homogenized) interface properties can be obtained. In addition, the 
simulations provide further understanding of the mechanisms involved during 
the relevant testing. Although this study presents results from basic problems, 
the method is general enough to include effects of residual stress, of high tem- 
perature environment, and of dynamic crack propagation, as well as three- 
dimensional details of the interface failure process. The potential exists for 
simulating nondestructive wave-based techniques aimed at evaluating interface 
properties. 

1 INTRODUCTION 

Physical reasoning and relevant research, i.e. 
Kerans et  al. ~ and Evans and Marshall, 2 suggest 
that the mechanical properties of composite mate- 
rials rely significantly on the nature of the interface 
between fiber reinforcement and matrix. It is the 
interface that delivers information (kinematic and 
dynamic quantities) from the matrix to the fiber 
and vice versa. Failure of composites involves not 
only failure of fibers and matrix, but also the 
propagation of cracks along and across, as 
explained subsequently, interfaces. The charac- 
teristics of such cracks, i.e. dissipated energy 

during propagation, their interplay with matrix/ 
fiber, etc., are decisive for the macroscopic pro- 
perties of a composite. It is therefore important to 
understand the interface properties and their role 
in the overall mechanical performance of a com- 
posite. Consequently, interfacial characterization 
has received intensive attention, from the experi- 
mental as well as the analytical point of view. 

Various experimental procedures addressing 
interfacial properties have been designed. 
Mechanical destructive tests have been and are 
being used, i.e. Jero et  aL 3 and Parthasarathy et  

al. 4 Recently, attempts to characterize interfacial 
properties nondestructively have also been exa- 
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mined by Karpur et al. 5 It is not intended herein to 
provide a thorough review of the literature on 
interfacial properties and testing. However, refer- 
ence is given to those works directly relevant to 
the present study. For reviews and trace of the 
literature we refer to Metcalfe 6 and Evans et al. 7 
and the works cited therein. For analysis of micro- 
mechanical stresses involved we refer to McCart- 
ney ~ and Pagano. 9 

In general, a 'universal' experimental procedure 
designed to identify interface properties for 
various material combinations has not been iden- 
tified. This is due to the fact that it is very difficult, 
if not impossible, to examine interface properties 
directly, to isolate the interface response. The 
relevant test measurements are sensitive to the 
properties of the matrix, the fiber(s), the inter- 
face(s) present, and the geometry and load condi- 
tions of the test setup. For example, while the so- 
called single fiber fragmentation (SFF) test has 
been used extensively for studying polymer, and 
lately metal matrix composites (MMCs), there are 
still a number of questions concerning the applic- 
ability of this test to evaluate interface strength. 
The SFF test is inappropriate for ceramic matrix 
composites (CMCs), as discussed further in the 
following. 

The present study focuses on (a) the single fiber 
fragmentation test, often performed on metal 
matrix composites, and (b) on the pushout and 
pullout tests on metal and ceramic matrix com- 
posites. The following section concentrates on the 
information available from such tests, and is 
followed by the description of the numerical simu- 
lation procedure used herein, and presentation of 
relevant results. Throughout, the paper discusses 
the method and results, and the potential of the 
approach. It is stressed that more needs to be 
understood in this important area of interface 
properties identification. It seems that success in 
doing so depends heavily on close cooperation 
between those doing experimental work, both 
destructive and non-destructive, and those doing 
analytical, simulation work. 

2 EXPERIMENTAL INFORMATION 

In the SFF test a fiber is embedded in a ductile 
matrix (the applicability of the test to composites 
with limited ductility matrices is currently being 
considered). The sample is subjected to tensile 
loading along the fiber axis. Through transfer of 
load from the matrix to the fiber, at some point of 

loading the fiber breaks. Further loading results in 
the fiber breaking into successively smaller frag- 
ments until the fragments become too short to 
enable further increase in the fiber stress level. 
Figure 1 (from Roman et al. ~° where also an over- 
view on the single fiber fragmentation test is 
given) contains typical results obtained from frag- 
mentation tests on SCS-6 SiC fiber with 
Ti-6AI-4V and Ti-14A1-21Nb (wt%) matrix. 
According to Roman et alJ ° the Ti-6AI-4V 
matrix possesses enhanced ductility and shows 
continuous yielding without yield drop or shear 
band or localized deformation zone formation. 
The T i-14A1-21Nb shows a much more compli- 
cated response at post-yield strains. 

Fiber fragmentation can be studied nondes- 
tructively. For example, a difference in the fiber 
fragmentation behavior between Ti-6A1-4V and 
Ti- 14AI-21Nb composites with SCS-6 SiC fiber 
has been observed at room temperature by 
Karpur et al.~ j' ~2 as shown in Fig. 2. From cross- 
sectional photomicrographs of these composite 
systems, it is apparent that the Ti-6AI-4V shows 
a greater degree of chemical bonding (and the 
resulting mechanical bonding due to the interface 
roughness) compared to that of Ti-14A1-21Nb 
which shows a smooth interface. The fiber frag- 
mentation of these two composite systems (Fig. 2) 
shows a corresponding shorter fragmentation size 
in Ti-6AI-4V compared to Ti-  14AI-21Nb. 

This study concentrates on the Ti-6A1-4V 
matrix. As shown in Fig. 1 the specimen shows a 
significant amount of plastic deformation. Since 
the acoustic emission bursts correspond mainly to 
fiber fracture, ~° it is seen that fiber fragmentation 
initiates after the matrix (Ti-6AI-4V) has 
reached its yield stress. This information is 
important for identifying interface properties as 
shown subsequently. 

Fragmentation tests are often performed on 
metal matrix as well as polymer matrix com- 
posites. The multiple fracture behavior has been 
studied mostly through the so-called shear lag 
analysis which provides a relation among the criti- 
cal aspect ratio of the fiber, the tensile strength of 
the fiber, and the interracial shear stress. Using 
arguments based on shear lag analysis, Kelly and 
Tyson ~3 showed that the critical length of fiber for 
load transfer, L c, is a function of the interracial 
shear stress according to the equation r~ = of d/ 
2L c where ri is the shear stress, af is the tensile 
strength of the fiber of critical length and d is the 
fiber diameter. Several limitations of the method 
have been identified. The method neglects the 
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Fig. 1. (a) Typical tensile stress-strain curves and acoustic emission RMS-strain plots for two single fiber composite systems at 
room temperature. (b), (c) Optical micrographs showing a portion of the fragmented fiber in the two composites after tensile 

testing: (b) Ti-6AI-4V, (c) Ti- 14AI-21Nb matrices, SCS-6 fiber. After Roman et al. "~ 
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Fig. 2. Typical images obtained nondestructively using obfique incident ultrasonic shear waves of 25 MHz frequency: (a) from 
an untested sample with single SCS-6 fiber embedded in titanium aluminade matrix; (b) from Ti-6AI-4V/SCS-6 sample after 
loading, showing the fiber breaks approximately one fiber diameter long; (c) from Ti-14AI-21Nb/SCS-6 sample after loading, 

showing the fiber breaks approximately three fiber diameters long. 
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dependence of the interfacial shear stress on the 
volume and strain hardening characteristics of the 
matrix, the modulus of the matrix, and the 
strengths of fiber and matrix. Also, the interfacial 
characteristics predicted by that method are often 
very unrealistic. ~° Ochiai and Osamura TM ~ have 
attempted to overcome some of the limitations of 
the shear lag analysis by considering the details of 
stress transfer (from matrix to fiber) and plastic 
stress-deformation response for the matrix. They 
have also reported numerical results by assigning 
a Weibull distribution to the fiber spatial strength. 

The so-called pushout and pullout tests are 
commonly performed on ceramic and metal 
matrix composites. Figure 3 shows a typical con- 
figuration for a pushout test. For fiber pullout, 
tensile load is applied on the fiber. For the nume- 
rical simulations described in the next section we 
consider pushout and pullout of a SiC (Textron 
SCS-6) fiber embedded in a T i -6AI-4V matrix, 
and in a glass matrix. The length of the fiber 
pushed out in metal matrix is much shorter than 
the length in ceramic matrix composites. This is 
mostly due to experimental difficulties in testing 
long fiber lengths in a metal matrix. As shown 
herein, these geometrical differences have import- 
ant consequences on the information obtained 
from the tests. 

The literature on the pushout and pullout test is 
rich. For a review of the reported experimental, 
analytical work in this area we refer to Kerans and 
Parathasarathy ~' for ceramic matrix and to Wat- 
son and Clyne j 7. ~ ~ for metal matrix composites. A 
large number of parameters influence the results 
from such tests, i.e. non-uniformities due to end 
effects, residual (radial and axial) stresses, the 
stability of interface crack propagation, and the 
elastic properties of the fiber and matrix. Relevant 
analytical works examine some of the underlying 
mechanisms, the result being a better understand- 
ing of the problem. ~'- ~ ') 

Fig. 3. Schematic of pushout test. 

3 SIMULATIONS 

Mechanics of materials research has been tradi- 
tionally carried out through experiments and 
theoretical analysis. Recently, however, a new 
trend of computer-assisted research has evolved. 
This branch has been triggered by the rapid pro- 
gress in computer performance, and from the 
increasing need for the understanding of systems 
far more complex than traditional techniques 
have ever handled. For example, in a typical single 
fiber fragmentation test, one can identify many 
complicated processes that take place concur- 
rently -- matrix yielding, fiber failure, interface 
failure and transfer of stress through the interface 
and matrix. It is important that such processes are 
understood so that the role of the interface can be 
identified and quantified. 

In order to simulate such problems numeri- 
cally, one may automatically think of the finite ele- 
ment method (FEM). However, within the FEM 
framework it is difficult to simulate the fracture 
processes occurring at the microlevel (at the 
length scale of a material's microstructure). Such a 
process would require use of elements much 
smaller than the crack sizes and significant mesh 
refinement, in addition to the requirement for a 
continuum-based fracture criterion (at the micro- 
level) that may be difficult to specify. 

In this work, a microscopic representation of 
the fiber, matrix and interface is achieved through 
a so-called lattice. Lattices are being used exten- 
sively in different scientific fields, i.e. fluid 
mechanics, physics, etc., particularly as a tool to 
solve differential equations. Such a method for 
solution of problems within linear elasticity was, 
apparently, first investigated by Hrennikoff. -~" 
There it is shown that a lattice provides a con- 
sistent approach to the solution of elasticity prob- 
lems -- the solution converges to the exact 
elasticity solution with lattice spacing reduction. 
The advantages of using a lattice (over FEM) 
become evident (as further explained in the se- 
quence) when (micro) fracturing is important. 
Such advantages have been realized by a branch 
of statistical physics where micro-fracturing in 
statistically heterogeneous solids is examined 
extensively.2 J.22 A number of works simulating the 
process of micro-fracturing in composite materi- 
als using a lattice discretization have been 
reported in the literature recently. It seems that 
this approach is receiving increasing attention: see 
the works of Schlangan and van Mier 23 in model- 
ing microcracking in cement-base composites, of 
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Murat e t  al. 24 and Monette et  al. 25 in  modeling the 
behavior of short fiber reinforced composites, and 
of Dai and Frantziskonis 26 in modeling the statisti- 
cal fracturing of cementitious composites and 
correlating it with ultrasonic nondestructive 
measurements. 

In this study we utilize a triangular lattice. The 
properties of the unit cell are, for the case of 
linear, isotropic elasticity, as follows: Young's 
modulus equal to the modulus assigned to the 
bonds of the unit cell, and a Poisson ratio that 
depends explicitly on the (constant) angular stiff- 
ness between bonds. Angular refers to the rota- 
tional stiffness between adjacent bonds. In the 
absence of angular stiffness the Poisson ratio of 
the unit cell is equal to 1/3. For a thorough pres- 
entation of the lattice properties and different 
lattice types we refer to Hrennikoff, 2° Herrmann 
and R o u x ,  21 Murat et  al. 24 It is also possible, with- 
out extensive effort, to consider anisotropy within 
a unit lattice cell, nonlinear effects, etc. Also, by 
assigning beam bending stiffness to the bonds, 
micro-rotational (Cosserat) effects are recovered. 
However, in this study we consider the simplest 
possible case, which calls for a triangular lattice 
without angular stiffness. Besides simplicity, the 
following advantages can be identified. Since 
interest is on fracture at the unit cell level, using 
such a lattice there is only one choice to serve as 
bond-failure criterion, namely the level of stress 
or the level of the corresponding strain at a bond. 
This is important since it is very difficult to iden- 
tify (experimentally) the local conditions under 
which failure at the micro-level occurs. Since in a 
composite material properties vary spatially (i.e. 
transition from matrix to interface to fiber) am- 
biguities related to the angular stiffness at the 
transition zones -- that may render the problem 
non-unique -- are not present when using a 
'central force' lattice. On the other hand, the 
Poisson ratio of 1/3 may not be precise. For the 
material combinations considered herein such a 
value is not unreasonable for the matrices. For the 
fiber, the problem of Poisson ratio determination 
is a difficult one and rigorous methods for its 
determination have not been established. Further- 
more, it is very difficult to determine (experi- 
mentally) the local characteristics (i.e. Poisson 
ratio) of interfaces/interface reaction zones. 

In short, there are several issues to be resolved 
before an accurate representation of Poisson, 
local anisotropy, length scales, and perhaps local 
rotational (Cosserat) effects come into the picture. 
Thus we proceed in this study by considering the 

simplest possible case, the central force triangular 
lattice throughout the domain of interest. 

3.1 The interface 

Figure 4 shows a 40 × 120 triangular lattice, 
which is one of the lattices used for simulating the 
single fiber fragmentation test. The fiber is placed 
in the center of the lattice in Fig. 4, parallel to the 
y-direction, and together with the interface is 
considered to be four lattice spacings wide and 94 
spacings long (4 × 94). The rest of the lattice is 
assigned matrix properties, and a single lattice 
spacing is assigned interface properties. From a 
first evaluation it may seem that the interface 
region considered is too 'thick'. This brings up the 
problem of interface thickness, and, as will be 
explained, there is a simple way to account for this 
in the analysis. 

As far as terminology is concerned, the term 
'transition region' (cf. the following discussion) 
may be more appropriate than 'interface'. A tran- 
sition region allows elastic deformation within the 
'interface' before fracture. However, both terms 
are used in the following, hoping that confusion is 
not possible. 

I 
Fig. 4. A 40 x 120 triangular lattice. 
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During processing of a composite material, a 
'reaction zone' is formed, i.e. an interface that may 
impart bonding between the matrix and the fiber. 6 
Several works have examined the material in the 
vicinity of the fiber, identifying significantly differ- 
ent properties than the matrix. That region is 
often called the mesophase. 27 Despite extensive 
work in this area, the behavior and properties of 
such a 'mesophase', or 'transition region' or 'inter- 
face' or 'interface reaction zone', have not been 
understood well. 

The SCS-6 (SIC) fiber is approximately 140 
~m in diameter. Its coating is - 3  /~m thick and 
has two layers of 1.7 and 1.3 ~m thickness, 
respectively. Both these layers are composed of a 
turbostratic carbon matrix containing SiC parti- 
cles and are separated by a very thin transition 
layer of carbon. In a composite made of titanium 
alloy matrix and SiC fiber with carbon coating a 
reaction zone consisting of several layers of TixC~, 
and TixSiy is formed and is modulated by the 
alloying composition of the matrix and the pro- 
cessing procedure. Similar considerations hold for 
ceramic matrix composites. A thorough presenta- 
tion on this subject can be found in Karpur et al. 5 
and the references cited there, where also the con- 
cept of the 'equivalent elastic interface' (EEl) is 
introduced. The concept is relevant to, and com- 
plements the present study; thus, the ideas behind 
the EEl are briefly described here. Since the 
thickness of the transition region (interface) and 
the spatial variation of properties along it are diffi- 
cult to quantify, it is advisable to consider an 
equivalent homogeneous transition region -- an 
interphase. 

It is difficult to specify the exact thickness of the 
(homogeneous) transition region, and the analysis 
would be sensitive to changes in thickness. In 
order to overcome this difficulty, the properties of 
the interface can be defined in such a way that its 
response is independent of thickness. Thus inter- 
face properties should be defined in such a way 
that delivery of information, the jump in displace- 
ment and the transmitted stress across the inter- 
face, is consistently independent of thickness. 
This is accomplished precisely by dividing the 
relevant quantities -- modulus of the homoge- 
nized region and failure stress -- by the transition 
region thickness. For example, if S denotes the 
interface stiffness coefficient (elastic modulus E 
over thickness h), a the normal stress at the inter- 
face, and u the jump displacement across the 
interface thickness, it is straightforward to show 
that S = a /u  = E /h .  Thus, by defining quantities 

such as the 'stiffness coefficient' and 'failure stress 
coefficient' (failure stress over thickness) the need 
for precise specification of the thickness is over- 
come. 

It is feasible to measure such coefficients non- 
destructively, i.e. the 'shear stiffness coefficient' 
using the theoretical model developed by Matikas 
and Karpur 28 and Karpur et alp for the charac- 
terization of the interface, together with ultrasonic 
quantification. The present and next paragraph 
describe such a process, briefly. For the develop- 
ment of the theoretical model, the interface 
between the matrix and the fiber is modeled by (i) 
assuming continuity of normal and shear stresses 
and normal displacements at the interface, and (ii) 
allowing the discontinuity of shear displacements 
at the interface. It is assumed that the (ultrasonic) 
vibration is transmitted instantaneously from one 
medium to the other by weightless shear springs 
with an equivalent rigidity denoted as N s (MPa/ 
/~m). Since the interphase might generally have 
variable properties along its thickness, the shear 
modulus of the interphase zone and the shear 
stiffness coefficient (Ns) are integrals over the 
thickness and represent statistical average values. 
As a result, the shear stiffness coefficient of the 
interface is a measure of the shear stress transmit- 
ted across the equivalent elastic interface per unit 
of elastic differential displacement. 

Ultrasonic quantification of the shear stiffness 
coefficient can be obtained by the measurement of 
the back-reflected ultrasonic shear waves from the 
fibers. 29 The incident stress wave induces a dis- 
placement of the matrix at the interface which is 
partially transmitted to the fiber due to the elastic 
deformation of the interphase region. The degree 
of discontinuity of the displacements and the 
associated partial transfer of stresses across the 
interface is a function of the interracial shear stiff- 
ness coefficient. However, due to the conservation 
of energy requirements (continuity of stresses), 
the remaining part of the incident ultrasonic 
energy will be reflected back to the transducer. As 
a result, after experimentally measuring the inci- 
dent and reflected ultrasonic energies, the part of 
the stress reflected from the fiber can be calcu- 
lated as a percentage of the incident energy (back- 
reflection coefficient). This back-reflection 
coefficient is also a measure of the part of the 
stresses transmitted across the interface to the 
fiber because of the continuity of stresses at the 
interface. Therefore, the ultrasonic shear back- 
reflection coefficient can be used to calculate the 
shear stiffness coefficient of the interface by 
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simple inversion of the theoretical equation. It 
should be noted that the experimentally deter- 
mined shear stiffness coefficient will be an average 
over the ultrasonic beam diameter (which is 
related to the incident wavelength) at the interface 
along the circumference of the fibers. 

In our lattice discretization, the smallest discre- 
tization scale (the lattice spacings) is assigned to 
the interface thickness. Thus the interface is con- 
sidered homogeneous by definition. A stiffness 
coefficient S and a failure stress coefficient F 
(failure stress over modulus) are assigned to it, 
and its failure is considered brittle. As mentioned 
previously the (shear) stiffness coefficient can be 
evaluated nondestructively. At this time the 
relevant experiments are being conducted 29 and 
correlations with the present study will be exa- 
mined later. At this stage, the relevant interface 
properties will be deduced from the destructive 
experiments via back analysis and physical 
reasoning. 

3.2 Simulation results 

The following have been assumed in the numeri- 
cal simulation procedure. Inertia effects and body 
forces are neglected, and load is applied slowly 
enough so that there is enough time for redistribu- 
tion of stress before failure/yield proceeds further. 
The fiber, interface and ceramic matrix are con- 
sidered brittle -- when a bond fails its load is 
reduced to zero and the released load is redistri- 
buted by solving the problem again with the 
broken bond absent. The difference for ductile 
matrix bonds (metal matrix) is that after the yield 
stress has been reached the modulus is changed to 
the (linear) hardening modulus Emh. Thus the 
simulation procedure involves the following steps: 
(a) discretize the structure into a lattice; (b) assign 
a failure/yield stress and stiffness to each bond, 
depending on whether it is spatially within matrix 
(brittle or ductile), fiber, or interface; (c) apply an 
increment of external displacement or load until 
the failure or yield criterion is satisfied by the 
bond carrying the maximum load -- the problem 
being linear makes identification of that load easy; 
(d) if that bond is brittle, release the load carried 
by it, or if that bond is ductile apply the new 
modulus (Era) to it, and repeat this step if another 
bond fails during the process of load release; (e) 
increment the externally imposed boundary con- 
dition until the next bond fails or yields and repeat 
the previous step. Allowing failure or yield of one 

bond at a time, together with the linearity of the 
problem during each step, assures a unique solu- 
tion. 

3.2.1 Simulation results - - f ragmentat ion test 
The following properties for the fiber and matrix 
are considered and assigned to the corresponding 
lattice bonds, i°,16 For the SiC (SCS-6) fiber a 
Young's modulus Ef=393 GPa, and a failure 
stress of = 3.5 GPa. Fiber failure is perfectly brittle 
-- when a bond fails its load-carrying capacity is 
reduced to zero. The Ti-6A1-4V matrix is duc- 
tile, with a Young's modulus E m = 110 GPa and 
yield stress am = 0"83 GPa. For the linear harden- 
ing post-yield response the modulus is considered 
a fraction of E m, i.e. Emn = Em/100. The depen- 
dence of the fiber fragmentation pattern on Emh is 
examined in the following. The matrix is not 
allowed to fail -- due to its ductility, failure occurs 
at large strains and the simulation is not carried 
out to such levels. 

For identification of interface properties the 
following can be considered. We employ the 
experimental evidence that no fiber failure occurs 
in the linear regime of the specimen's stress-strain 
response (Fig. 1) but fiber failure initiates in the 
vicinity of the deviation from linearity. Having the 
matrix and fiber properties fixed, the interface 
properties have to be such that the predicted 
load-displacement response and fragmentation 
pattern match the experimental results as close as 
possible. These impose important restrictions on 
the properties of the interface. Thusl together with 
the (stepwise) linearity of the problem a few simu- 
lations can identify the range of interface proper- 
ties. Before we identify such ranges, we present 
the conclusions from the simulations. 

(a) The fiber fragmentation pattern depends 
strongly on the volume of the matrix pres- 
ent. This has also been demonstrated 
experimentally.13,14 It can be better under- 
stood if we consider the following. In the 
limit case of very small or negligible matrix 
volume, a single fiber failure will occur. As 
the amount of matrix surrounding the fiber 
increases there should be a threshold 
where multiple fiber fragmentation occurs. 
By increasing the amount of matrix further, 
the result is reduction in the average frag- 
mentation length. The saturation limit, if it 
exists, depends on the properties of the 
interface. Our analysis shows that the 
threshold for the present material combina- 
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tion is at a matrix-fiber ratio (in two dimen- 
sions) of approximately 10-12. A similar 
observation was made by Ochiai and 
Osamura L4 in their experiments on W 
fiber/Cu matrix composites. They indi- 
cated that fiber fragmentation occurred till 
a maximum fiber volume fraction of - 10%. 
It is noted that in their experiments panels 
of rectangular cross-section were used, 
while our analysis is two-dimensional. This 
is discussed further in the sequence. The 
approximation (10-12) in our analysis is 
due to the following. 

(b) The matrix hardening modulus Emh influ- 
ences the fragmentation pattern. The influ- 
ence is not sensitive -- only large changes 
in Emh influence the fragmentation pattern, 
i.e. average length between fragments. For 
Emh=0 a single fiber fracture occurs, or 
even no fiber fracture at all, depending on 
the interface properties. 

(c) Both the interface modulus and strength, 
and their relative values, influence the 
fragmentation pattern. A weak interface 
will fail even before the matrix yields, the 
result being that the fiber will simply act as 
an inclusion in the matrix. This also 
depends on the modulus. For example, if 
the interface and fiber are subjected to the 
same strain, the fiber will fail first only if the 
interface relative values (strength, modulus) 
allow so. Interface modulus does not have a 
strong effect within changes of about 100% 
or less. 

(d) The simulations showed that it is prac- 
tically impossible to achieve fragmentation 
lengths (average) of the order of or lower 
than the fiber diameter. Perhaps this pro- 
vides goals such as tailoring the interface 
properties. In passing, it is herein specu- 
lated that the optimum interface properties 
depend on the geometric and loading con- 
ditions of a specific test and/or configura- 
tion. For example if fibers are close 
together without 'enough' matrix material 
in between the optimum interface proper- 
ties are possibly different than the ones 
implied by a single fiber fragmentation test. 
This important area seems to be totally 
unexplored. It is currently being addressed. 

(e) Immediately after the fiber breaks at some 
location, tension cracks propagate along 
the interface. In order for fragmentation to 
occur these cracks have to be arrested and 

(f) 

the arresting length (and thus the frag- 
mentation pattern) are influenced strongly 
by the interface strength. This provides 
significant limitations to the range of inter- 
face strength. In other words, the debond 
length is important and should be 
measured, when possible, during the 
relevant testing. 
The load-displacement or stress-strain 
response of the specimen is practically 
insensitive to the interface properties. This 
is mainly because the one fiber specimen 
does not behave as a composite. Thus the 
observed fragmentation pattern and 
debond length are the ones providing infor- 
mation on interface properties. 

Figure 5 shows the load-displacement 
(stress-strain) response obtained from a 40 x 120 
lattice. The material properties used for the 
matrix and fiber are the ones given above. For the 
interface the modulus coefficient derived is 857 
MPa/k~m and the failure strength coefficient for 
one of them is 11 MPa//~m and of the other one 6 
MPa/~m. The meaning of such interface proper- 
ties is discussed below. The (small) stress drops in 
the curves correspond to successive fiber breaks. 
It is noted that experimentally, often, no load drop 
is observed, for example Ochiai and Osamura ~4 
observed them, while Roman et al. H~ did not. 
Since it is known that the fiber breaks at those 
levels of stress, no load drop may be attributed to 
small snap-through, to rate of loading effects, or 
to the sensitivity of the equipment used. The pre- 
dicted stress-strain response (Fig. 5) correlates 
well with the experimental one (Fig. l(b)) where 
yield initiates at about 850 MPa, at a strain close 
to the 2% level. Further it is noted that with these 
values for the interface properties most of the 
matrix yields before fiber breaks initiate. 

The simulation is two-dimensional while the 
actual fragmentation test (Fig. 1) is three-dimen- 
sional! The diameter of the SiC fibers is approxi- 
mately 0.14 mm. The samples ~° were 1.50 mm 
thick, 19-05 mm (gage) long and 6.53 mm wide in 
the gage section. Thus the problem is not axi- 
symmetric. It was mentioned that the fragmenta- 
tion pattern depends on the amount of matrix 
surrounding the fiber. In the three-dimensional 
case it is not clear if the minimum matrix dimen- 
sion (1.50 mm for the tests) or the area of the 
matrix ( 1.50 x 6"35 mm 2) or both are decisive with 
respect to the fragmentation pattern. For the test 
configuration, the ratio (matrix/fiber) with respect 
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to the minimum dimension is approximately 1-5/ 
0.14. Experimentally this ratio seems to govern 
the fragmentation pattern rather than the cross- 
sectional area ratio. Three-dimensional simula- 
tions are not attempted at this time, due to 
excessive computer time requirements. Further, 
several issues need to be understood before three- 
dimensional effects come into the picture. 

Although the two different values for the inter- 
face strength coefficient yielded a similar 
load-deformation response, the fragmentation 
patterns that evolved were different. In the follow- 
ing figures, for effective presentation, a broken 
bar is represented by a thin, short line perpendi- 
cular to it. Figure 6 shows some of the evolution 
stages of fiber fragmentation and interface failure 
for S = 11 MPa//am, and Fig. 7 shows some of the 
stages for S=6 MPa/~tm. The following have 
been identified: 

(1) Interface cracks at the fiber ends initiate 
and quickly become arrested. This is con- 
sistent with the analysis and experiments by 
Atkinson et  al.~9 on the stability of interface 
cracks near the fiber end, for an embedded 
fiber. 

(2) For both cases the fiber breaks first in the 
middle of its length. The reason why this 
happens is explained subsequently. 

(3) After, or concurrently with, the first full 
fiber crack development (over its width) 
cracks propagate along the interface and at 
some point are arrested: Figs 6(b) and 7(b). 

(4) The crack length along the interfaces is 
important with respect to subsequent fiber 
breaks, and thus with respect to the final 

(5) 

(6) 

fragmentation pattern. If Figs 6 and 7 are 
compared, it is seen that the interface crack 
length is smaller in Fig. 6 than in Fig. 7. 
This is the decisive reason for the final 
fragmentation pattern. In Fig. 6 the average 
fragmentation length is about half that in 
Fig. 7. 
The differences between Figs 6 and 7 can 
be explained by the length of interface 
cracks. In Fig. 6, for example, a greater 
total length of interface is required to trans- 
mit enough load to the fiber -- capable to 
break it. The interface strength is important 
here. Figure 8 shows the crack evolution 
when an interface strength coefficient F= 1 
MPa/~m is considered, the other param- 
eters being the same as these used for Figs 
6 and 7. For strengths even lower than that, 
no fiber breakage is observed. 
The fragmentation spacing is not constant 
(a distribution of fragment lengths deve- 
lops) for the following reasons: (a) after the 
first break occurs in the middle (as 
explained in the next paragraph), i.e. Fig. 
6(a) and (b), stress distribution in the upper 
and lower halves of the fiber ceases to be 
symmetric and thus the next fiber break 
may not occur at a quarter of the fiber 
length; (b) in the algorithm, when the frac- 
ture criterion is met by two (or more) bars 
simultaneously, only one of them is actually 
broken and the system is re-equilibrated. 
This may suspend the symmetry of the 
problem from the early straining stages, i.e. 
note the (small) cracks at the top of Fig. 
6(a). 

So now the question of why the first fiber break 
develops in the middle comes into the picture. We 
find this opportunity to discuss further, and at the 
same time, the problem of the ratio of the width of 
the sample (or matrix) to the diameter of the fiber. 
Let us reduce the amount of matrix surrounding 
the fiber, say a lattice of 30 x 120 with the same 
dimensions for the fiber as before. For interface 
properties identical to those that produced Fig. 6, 
a single fiber break will develop (no fragmenta- 
tion) for his 30 x 120 configuration. Let us look at 
the distribution of strain before fiber fracture. 
Figure 9 shows the distribution and is plotted as 
follows. Only bonds exceeding a certain level of 
strain are drawn. Clearly the stress concentration 
is in the middle. In order for the fiber to break, 
enough load to cause this must be built up in the 
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Fig. 6. Fiber fragmentation and interface failure stages for interface strength coefficient F= 11 MPa//~m. 

matrix and the interface must be capable of trans- 
mitting the force to the fiber. For the present fiber, 
matrix and interface properties, the horizontal 
dimension of 30 units is approximately the lower 
limit over which this will happen. 

The interface region is considered homogene- 
ous. This, of course, is an approximation of the 
reality. In general, at the micro-level (at the length 

scale of a material's microstructure) it may be 
argued that failure is predominantly in tension. 
Then, compressive failure is the integrated, 
phenomenological combination of several tensile 
micro-failures. By considering the interface as 
being homogeneous, we indirectly imply or 
assume that the actual response is homogenizable. 
Then failure in compression is possible. For the 
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single fiber fragmentation test, compressive fai- 
lure proved unimportant. However, for the push- 
out and pullout tests, not allowing compressive 
failure introduces regions where failure is 'prohi- 
bited'. Then, due to the homogenization assump- 
tion, interface compressive failure should be 
considered. An effective procedure for identifying 
differences between tensile and compressive 

failure would be by comparing reversed tests, i.e. 
pushout and pullout. Comparison of the load 
levels that initiate micro-fracturing should provide 
the relevant information, since after micro-crack 
initiation the problem is nonlinear. Such experi- 
mental information is not available at this time. 
However, out back-analysis of simulation results 
showed that a ratio of compressive to tensile 
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failure stress of five provides a reasonable esti- 
mate. The effect of that ratio is examined subse- 
quently. 

3.2.2 Simulation results --  pushout/pullout,  metal  
matrix 
The pushout and pullout tests on metal matrix 
composites are usually performed on thin speci- 
mens sliced perpendicular to the fiber axis.~7, ~.~lJ 
Interface properties are (usually) extracted from 
such tests by considering the average shear stress 
at the interface (external load over interface area). 
The ratio of specimen at height over fiber dia- 
meter ranges between 1.0 and 3.4. Specimens are 
mounted on a support block which has a groove 
(sometimes a hole) two to four fiber diameters 
wide. The purpose of the groove is to allow the 
fiber to be pushed out. Since the recess in the 
support surface is typically a linear groove, axial 
symmetry of the problem is lost. Figure 10 shows 
schematically the sequence of events and stress 
distribution during the pushout test. ~7.~ Our 
simulations agree with some of the conclusions 
made in that paper. Additional, important points 
are presented below. 

For simulation of the pushout/pullout tests, a 
120 x 25 lattice is considered. The fiber is eight 
lattice units wide (diameter) and 25 units in height. 
Thus the height over diameter ratio is 3"125. As 

previously, the interface thickness is one lattice 
unit. Since the specimen's height is relatively low 
(especially when compared to the heights used in 
ceramic matrix composites examined in the next 
section) two sample support configurations were 
examined. In the first one the support 'hole' is 
1.25 times the fiber diameter, while in the second 
one it is 2.75 times. The fiber, matrix and interface 
properties are those used for simulating the frag- 
mentation test (see above) with S = 11 MPa/#m.  
The simulations showed the following: 

(1) Even for relatively low imposed external 
displacement, small, stable cracks form at 
the interface near the external load applica- 
tion side (at the top), for both the pushout 
and pullout cases. These cracks have no 
apparent implications on the load-dis-  
placement curve of the simulation. 

(2) After the arrest of the cracks mentioned 
above, tension and shear dominated inter- 
face cracks initiate at the side opposite to 
the external load application. These cracks 
are initially unstable and result in a notice- 
able drop in the external load. Such cracks 
form in both the pullout and pushout cases. 
The reason for such cracks is intense free 
surface effects at the bottom end of the 
fiber, with bending of the unsupported 
matrix for the pushout case, and Poisson 
effects for the pullout case. 
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Fig. 10. Schematic illustration of events and stress distribution during the pushout test. From Watson and Clyne.17 

(3) After the arrest of the cracks that initiated 
at the bottom, further external load is 
required for the whole interface to fail. 

(4) Pushout requires a larger load than pullout. 
This is attributed mainly to Poisson effects 
that tend to either stabilize or destabilize 
interface crack propagation, together with 
differences in failure due to tension and 
compression. The ratio of failure stress in 
compression over failure stress in tension 
in these simulations is five. 

(5) The size of the 'hole' at the bottom support 
has a significant effect on the load-defor- 
mation response. This is mainly due to the 

(6) 

small thickness of the sample. For large 
thicknesses this effect is not present, as will 
be discussed in the next section for ceramic 
matrix composites. 
The effects of residual stress, although not 
examined herein, seem to be important --  
this is concluded from the fact that during 
the pushout/pullout process the matrix 
near the interface is in the regime of yield 
initiation, and partial small-scale yielding 
occurs. The residual stresses are expected 
to influence these trends and thus the over- 
all load-deformation response. Residual 
stresses can be quite high in metal matrix 
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composites. 3~ Their influence is currently 
being studied. 

Figure l l(a) and (b) shows the predicted 
load-displacement curves for bottom 'hole' to 
fiber diameter ratios of 1-25 and 2.75, respect- 
ively. It is seen that the larger hole shows a de- 
crease in peak load by as much as 20% over the 
smaller one. 

In general, the results compare well with the 
reported experimental results. 17,~8"3° The results 
herein correspond to the Ti-6AI-4V matrix, 
which forms a 'good' interface with the SCS-6 as 
compared to other Ti-based matrices. For the 
large (2.75×fiber diameter) opening at the 
bottom case the average shear stress (load over 
interface area) at (global) peak load is approxi- 
mately 250 MPa for pushout and 150 MPa for 
pullout. Factors that influence these values are the 
geometry of the problem, i.e. opening at the 
support, specimen thickness, and the residual 
stresses that are not examined herein. If such 
stresses result in significant matrix yielding during 
the tests, then the peak loads are expected to be 
smaller than those in Fig. 11 and the correspond- 
ing displacements larger. It is not known how 
three-dimensional effects, i.e. the non-circular 
opening at the support system used in the experi- 
ments, non-uniform interface failure along the 
fiber circumference (localization), etc., influence 
the experimental data or the simulation proce- 
dure. Figure 12 shows the interface crack patterns 

at a stage of loading for the pullout and pushout 
simulation (load imposed on the left side). It is 
important to note that the interface properties 
used for the prediction of the pushout/pullout 
tests are those evaluated from the back-analysis of 
the fragmentation test results. One of the issues 
not resolved is the influence of the amount of 
matrix material in the fragmentation tests, since 
the setup is not axisymmetric. The 'mapping' to 
two dimensions was done, herein, with respect to 
the minimum specimen thickness. The influence 
of the third dimension is not clear at this point. 

3.2.3 Simulation results - -  pushout/pullout, 
ceramic matrix 
The pushout/pullout test setup for ceramic matrix 
materials is similar to those described above with 
the following differences: the matrix is brittle, the 
specimen thickness is much larger, and the inter- 
face is much weaker (residual stresses are dis- 
cussed later and are not included in the present 
analysis). For the simulations the same fiber 
properties (SCS-6) are considered. For the glass 
matrix E m = 65 GPa and brittle failure occurs at 
ot = 0.1 GPa. Typically the specimen thickness is 
about 20 times the fiber diameter. In the simula- 
tions we consider a 40 × 40 lattice, the fiber being 
2 × 40 and, as before, the interface is one lattice 
spacing wide. For identification of the interface 
properties, we employ the experimental evidence 
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that during the pullout/pushout process, no 
damage is induced on the matrix or the fiber. The 
simulations showed the following, comparing the 
present cases (ceramic matrix) with the previous 
ones (metal matrix): 

(1) Since interface properties that would 
induce matrix damage were not consi- 
dered, the matrix remains in its elastic 
regime (below its failure stress) throughout 
the entire pullout/pushout process. Then, it 
is mostly the geometry of the problem, 
together with the interface properties, that 
dominate the response. 

(2) The size of the 'hole' at the bottom of the 
specimen has practically no influence on 
the load-displacement and crack pattern 
predicted through simulation. The results 
presented in the following were obtained 
with an opening at the bottom equal to 
three times the fiber diameter. 

(3) Contrary to the metal matrix cases, no sig- 
nificant cracking initiated at the bottom. 

Figure 13 shows the load-displacement 
response predicted with a stiffness coefficient 
S--70 MPa/pm and a failure stress coefficient 
F= 0"09 MPa//~m. As before the ratio of com- 
pressive over tensile failure stress is considered 
equal to five. Figure 14 shows the crack patterns 
obtained at various stages of applied load. Figure 
15 shows the influence of S and of the ratio of 
compressive over tensile failure stress (when com- 
pared with Fig. 13) on the load-displacement 
response. These curves can be directly compared 
with experimental/analytical data -- together with 
statistical analysis of the data scatter, not con- 
sidered herein, reliable values of the homogenized 
interface properties can be obtained. 

4 DISCUSSION AND CONCLUSION 

The present analysis has been based on the homo- 
geneous interface region assumption. It may be, 
however, that homogenization of the actual inter- 
face response is not possible or reasonable. For 
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example, typically, heterogeneous materials 
develop a disordered network of micro-cracks 
from the early straining stages. For strain levels 
beyond a relatively low threshold, homogeniza- 
tion is only possible for large length scales, much 
larger than the initial (at zero straining) hetero- 
geneity scale of the material. Experimental evi- 
dence 32 for metal matrix composites shows 
development of localized interface damage, under 
even very low strain levels. Thus, if this is the case, 
the interface properties obtained herein by back- 
analysis do not represent actual local properties. 
Perhaps the best way to obtain local properties is 
through nondestructive evaluation. 5 Several 
questions, about the 'evolution' (with straining) of 
such properties and about homogenization (if 
possible) based on rigorous analysis, have yet to 
be examined. From this perspective, the present 
study is only a first attempt towards understand- 
ing interface response and its influence on com- 
posite material performance. 

Residual stresses in metal matrix composites 
are relatively large. 3~ Even in metal matrix com- 
posites they can be important. By ignoring them in 
the present analysis, we are not able to separate 
the effect of residual stresses from the 'actual' 
interface response. Thus, especially for quantita- 
tive evaluation of interface parameters, the pres- 
ent work is amendable to incorporation of 
residual stress, for both metal matrix and ceramic 
matrix tests. This important issue is currently 
being addressed analytically and experimentally. 
Another issue concerns friction and interface 
roughness, -~3 which affect the load-carrying ability 
of the interface after debonding. It is possible to 
incorporate such effects in the present analysis by 
altering the post-peak response of the (homoge- 
nized) interface. We feel that this is closely related 
to residual stresses and has yet to be examined. 
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