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Continuous-fiber metal-matrix composites (MMCs) have a multitude of potential applications
in situations requiring light-weight, high stiffness materials possessing high temperature capa-
biliry [1]. Some of the potential applications for these materials are high-performance aerospace
vehicles, advanced aircraft engines, missiles, advanced supersonic transports, and advanced
lghtgt aircraft [2]. _Siqce all of these applications involve cyclic loads that can lead to a
decrease in load carrying capabiliry frequent inspection and monitoring of these materials for
detection and sizing of flaws or other rypes of damage are necessary to ensure structural
integriry [3,4].

In the past, information regarding the damage mechanisms occurring in a material was
obtained by observing the macroscopic mechanical response of material specimens subjected
to forces (static or cyclic), temperatures (static or cyclic), and environments (oxidizing gas,
nrbine engine exhaust, etc.) representative of the target application. Typical mechanical
responses monitored include changes in stiffness, elongation, and residual tensile sffength. In
addition to the mechanical response, metallographic examination of the material as well as
rnicroscopic inspection or photography ofthe specimen surface were used to reveal oxidation,
crbcking, or other accumulated damage. These traditional methods proved useful for understand-
ing the propagation of self-similar cracks in both aerospace and automotiye structures. [n
addition, information gained from inspections can be used to determine how oftbn a component
needs to be inspected to detect growing cracks before they reach a critical size and cause
failure of the sfucture as a whole [51.

Unfortunately, many of the traditional inspection techniques provide somewhat limited
information when applied to metal-matrix composites because of the inhomogeneous, aniso-
tropic nature of composites. Damage in the new advanced materials evolves in more subtle
forms than a dominant crack that can be quantified primarily through measurements made on
the surface of the material. [n some tests, a dominant crack is observed on the surface of the
composite, but distributed damage can also strongly influence the life of the composite [6-]21.
A crack can be bridged either by fibers or ductile material that at elevated temperatures can
be degraded by environmental attack U3,I4l. In addition, fibers fail within the material,
microcracks form in the matrix U 5 J q, and matrix/fiber debonding occurs. Since these forms
of damage are not readily observable or measurable, obtaining information on these rypical
forms of damage from bulk averaged measurements and other commonly used techniques for
established materials is extremely difficult.

Edsting nondestructive evaluation (NDE) techniques need to be evaluated, and new experi-
mental capabilities need to be developed to inspect metal-matrix composites and to provide
quantitative data because quantitative data is essential for developing methodologies in life
prediction studies [2,9,14. A review of the literanfe revealed only a few studies that quantita-
(vely assessed the residual strength of metal-matrix composites after expending a certain
Percentage of the proposed fatigue life U8l. Therefore, the main objectives of this research
enort were to evaluate various NDE methods to study the evolution of isothermal fatigue
damage and to correlate this information with the residual strength of the composite. Such
correlations between damage, as it evolves under simulated service conditions, and the charac-
terization results from NDE techniques are necessary to produce successful life prediction-'methodolosies.

- 
Nondestructive evaluation methods can be used to evaluate the integrity of a material without

comp.romising its mechanical properties. Each of the NDE techniques used in this study isqescribed 
in the following paragraphs.
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Nonde structive Evaluation Technia ue s

Oblique Incidence Shear Waves-This technique can be used to characterize the fiber-matrix
bond rigidiry and load transfer efficiency in composites t21,281. This method produces shear
wave propagation in the composite through mode conversionlof the incident longitudinal 

'

energy at the water/composite interface. The use of this particular riethod has some advantages
compared to other NDE techniques. First of all, resolution capabilities are enhanced since the
shear wave velocity is lower than the longitudinal wave velocity for a given frequency. Second,
a shear wave incident on the interface between the matrix and the fiber applies stresses
that are tangential to the fiber circumference. This method has been used in monitoring the
delerioration of the fiber-marix interface due to elevated temperature tests [t and evaluating
frber alignment and porosity levels in a composite [29].

Reflector Plate (Jltrasonic Scanning-This technique is similar to conventional through-
transmission ultrasonic scanning but uses a refl'ector plate instead of a receiving transducer.
During scanning of the test specimen, ultrasonic waves pass through a test specimen to a glass
"reflector plate" beneath the specimen. The waves reflect off the plate and then travel through
the specimen a second time before returning to the transducer. The transducer is scanned in
a raster pattern acquiring data at regularly spaced X, Y locations. The amplitude of the gated,
reflected signals are plotted as a function of X and Y locations to produce a C-scan. This
technique has been used to screen out defective and improperly made test samples prior to
material behavior studies, thus reducing data scatter due to manufacturing defects. Since this
technique is sensitive to changes in material densiry and elastic modulus [30], reflection plate
inspection has also been used in identifying damage produced during cyclic loading [-31]'

(Jltrasonic Surface Wayes-surface wave (or Rayleigh wave) techniques provide a useful,
nondestructive evaluation of near-surface material damage. Surface waves can only penetrate
the surface of a material to a depth of approximately one wavelength and are extremely
sensitive to the presence of smali surface or subsurface cracks. Attenuation of the surface
wave is dependent upon the amount of scattering caused by cracks, material grains, other
surface anomalies, as well as absorption by the material. The change in attenuation and velocity
of surface waves can be used as a good indication of possible changes in the surface and
subsurface areas of the material due to cracking and property gradients [32-34). Immersion

':r'

r i r



dx interfa- t X-Ray Radiography-X-ray radiography is based on the differential absorption of penetrating
naller than 1
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i the pT. [35]. X*ay. radio.sranlr was selected for its capability to image fiber alignment and

;;;";; - | gat3riA abnormalities.oriented perpendicular_to the material surface as well as its potential
- !- :- detecting cracks oriented parallel to the X-ray beam. X-ray radiography has been usediber/matrix | 

'r

;l;";;;;; ,r,, I 
successtully to detect frber swimming arrd misalignment in MMCs [30]. \..

r acoustic. I' :_-:; . , I use4 as proposed by Mackllan [3/], to monitor progressive damage.
JroDerues'--L_. .

;;fr;d ;|l Materiars and Equipment
" , iS'f I Material

f,rber-matnx :lf I
,duces shear 

',1ii 
l The material system evaluated during this study consists of unidirectional BP Sigma SM-

longitudinal -:";:. .| 1240 silicon :Tbtg. 
(SiC).fiben in aTi-6Al-2Sn-4Zr-ZMo matix.The six-ply composite was

, uai-tue.r -!!{ I manufactured by Howmet2 and was determined to have a fiber volume percentage of 24.5 +

,ed since the i; | 0-27o. Sigma SMI2.1O is a OTiB2 coateC SiC fiber produced by BP Metal Composites Ltd.3

ncv. Second,'El- Th" SiC is chemical vapor deposited onto a tungsten filament substrate. The fiber has a nominal
,lies stresses .;.1$: I diameter of 100 pm (0.004 in.), and the duplex protective coating is approximately 2 p.m

rnitoring ttrr .:ffi| thick. Due to the poor thermal shock resistance of the outer TiB2 coating, which causes fiber

rd ev -ting ,f,S I degradation during composite manufacture, Howmet developed a protective coating for the

i# I fiber to reduce this problem. The matrix material, Ti-6Al-2Sn47.r-2Mo, is described as a near-
=+ii.l a a * b alloy that has good mechanical heat resistance [3fl.
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pulse-echo ultrasonic inspection using surface waves was used during this research effort to
produce C-scan-type images of the specimens. In addition, in situ contact surface waves were

,nal through{ The composite was produced by plasma melting the titanium alloy powder to deposit the

g transducer' l;e nansaucer. i;g i 
matrix material around a frber array precision wrapped on a mandrel. Monotape layups were

o-.n ,o u glass :,ffi: I 
produced subsequently by cufting and arranging the fiber-reinforced"monotapes." Multilayered

o - t rP-* i l |  +: '

ravettt'ough;#.f 
ttber-reinforced composite panels were produced by h_ot consolidation of monotape layups

i,,.-*Olp,,g1 
using hot isostatic pressing. This method report€dly offers the advantage of improved frber

, of ,n. gut 4ffi :lTiog 
control over conventional methods of titanium-matrix composite CnvIC) fabrication

i-*-. nieffii, t't
nnr., nrt"t t91ffi1 ,^lT^.:tl 

w:r: c:t from the consolidated, unidirectional plate by afra,live wat3r j31 inlo
',1.111.. 'gij,,131..,Ugffi]-, l1s;bon.-shaped test specimens (Fig. l). All specimens were mechanically tested with the
,n".rion plffi"mT., load applied in the longitudinal, or fiber, direction-

ading [3Il' ;Fi'ry:
T-*-Uhrasonic Test Equipment

)vide a 
::::|1iffil The ultrasonic data acquisition and imaging system used for reflection plate inspection and

onlY Penetfilt9only peneFdp-ffI', imrnersion surface waue scanning consisted tf a five-axis mechanical scanning system with
qt .t-T:i::1ffi ,. 

0'025-mm minimum step size (the actual resolution of the system is dependent on the ultrasonic

:ijLt""t*"tilffii:. 
frequency used and is generally larger than the step size), broadband ultrasonic spike pulserl

>n and
ire surface
t4l. ;::YTet Corporation, Operhall Research Center, Whitehall, MI.-tsP 

Metals Composites, Ltd., Famborough, UK.
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FlG. l-schematic of dog-bone-shaped fatigue specimens used during this study.

receiver, and a 100-MHz, 8-bit signal d.igitizer. Data acquisition and imaging were controlled

by a computer with custom software. Information about the transducers used during the scans

is iistea io tuut" 1. The glass plate used during reflection plate inspection was 18 mm thick.

The ultrasonic data acquisitibn and imaging system used for oblique incidence shear wave

scanning and acoustic -i..otaopy also consisted of a five-axis mechanical scanning system

with 0.025-mm resolution. Howerrer, the broadband pulser/receiver used had a wider bandwidth

and a shorter pulse necessary for high frequency scanning. In addition, a2-GHz 8-bit digitizer

was used. As mentioned previously, data acquisition and imaging were controlled by a digital

computer with custom ,oit**". Information about the high frequency transducers used during

the scans is also listed in Table l.
Equipment used to generate, receive, and digitize ultrasonic signals during in situ ultrasonic

testing consisted of a=br.oadband (35-MHz) ultrasonic spike pulser/receiver and a personal

"orrrpi ". 
equipped with a 100-MHz 8-bit resolution data acquisition board for digitization of

ttre uttrasonic iignal [.31]. Surface wave transducers and wedges were necessary for in situ

\;;;;;;t" minitorinj FiS.2a), and in situ longitudinal wave testing required a fatigye

test'frame with grips *Lititi"a specially for placement of the ultrasonic transducers at the

ends of the specimens (Fig.2b). Bioadband contact transducers possessing a center frequency

of 10 MHz were used for both in situ surface wave and longitudinal wave monitoring' Moge

conversion wedges were specially manufactured by Panametricsa to produce surface waves in

titanium matrix composites. The primary couplant used to provide good acoustic couplingI
' i i ,

.'ii
, l l
i,li
, i l i

, , [ L' i i

TABLE l-Transducer information
du
sit
co
Ul
co

I

Scan Type

Transducer
Frequency,

MHz
Diameter, Focal

mm Length, mm

Theoretical
-6dB Focal

Spot Size, mm

Immersion surface wave
Reflection plate
Oblique incidence shear wave
Acoustic microscoPY

10
25
50

100

12.7
6.35
6.35
6.35

76.2
50.8
12.7
5.08

0.92
0.49
0.062
0.012

Wl

re
el

aPanametrics, Waltham, MA.
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during testing was Vaseline Petroleum Jelly. It was used because its viscous nature prevents

significant evaporation of the couplant ovlr time intervals of 100 h or more' An alternate

co=uplant, T1[i1MOSOMC, a high temperature (0 to 500'F) couplant manufactured by Echo

Utt asounJ,s was used during in situ tongitudinal wave characterization' All in situ tests were

conducted at room temPerature.
A standard film-based X-ray system was used to take the X-ray radiographs' Typical energies

were 60 to 80 kev with 5-mA current. Exposure times range from 30 to 60 s, and high-

resolution film was used. The system was set up to give a 1:l specimen-size-to-image-sizn
exposqre. previous work showed that this system 

"ooid 
i-ug. individual fibers in MMCs [J0]'
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Mechanical Test Equipment ,,:..rii

Isothermal fatigue tests were conducted on a horizontal test frame incorporating u pn"u,nu,i. .,Li:i,
ram for load control. The test system was positione! noriz91t1lt1 to improve r.rnp"ru*r1,.-rl',.
control and to allow for proper extensometry mounting. A 25-kN load cell *^ ur.d- -i 

-'
loads were controlled to within 0.1 IN. Specimens were positioned horizontally in p.eciseiJ . .,
aligned, hydraulically actuated" rigid grips 137-391. Gripping pressure was appioximatetv 6 .
MPa. A symmetric, triangular load cycle was generated by a personal computer using cong.el .-.*.;-,-
software developed by the University of Dayton [40]. Axial strain was acquired ttnough.il ,1.
the tests with a 12.7-mm gage length, high-temperaturc, MTS extensometer containing qu^n, .,
extension rods, :.

Fort}re500"CfatiguetestS,thespecimenswereheatedusingradiantenergy,quartzlamp,
heaters. Two heating units were used, each containing four tungsten filament qu^nt f".pr.
One heater was positioned above the top surface of the specimen and the other placed below.
and each lamp was paired with another to form four controllable heating zones. A uniform
temperature profile (=3"C) was maintained throughout a 25-mm region centered along the
length of the specimen. The quartz lamp outputs were controlled by commercial four-zone.., -::.:,
digital, temperature controllers. Four Type K thermocouples welded to the top and bottom
surfaces of the specimen were used for temperature sensing. A more detailed description is
provided by Hartman et al. [37-39]. This heating system produced a temperature of 500 +
3t in the specimen gage section for the duration of the tests.

Procedures

Baseline Tension and Fatigue Tests

Since the literature contains minimal information on the Sigma/Tr-6242 composite systenr,
baseline tension and fatigue curyes were generated. Two tension tests were conducted at room
temperatue, and another two werc tested at 500"C. This temperaturc was chosen since it
represents the upper limit at which Ti-6242 is typically used [36]. The tests werc run in load
control at a rate of 10 MPa/s. Information obtained from these tests was used in the selection
of load levels and intemrption points for subsequent fatigue tests.

Baseline isothermal fatigue tests were conducted at foom temperahre and 500'C as depicted
in Fig. 3. All tests were tension-tension fatigue, run in load-control with a riangular waveform,
a sEess ratio of 0.1, and a frequency of 0.01 Hz. Six baseline fatigue tests werc conducted at
each temperature. The maximum applied stress for each test was chosen as a percentage of
the baseline ultimate tensile strength at that temperature: 60, 65, 72,80, and 90Vo. The stress
ratio was chosen to ensure consistency with previous work done on similar titanium matrix
composites, and the frequency was selected to ensure a uniform loading profile since pneumatic-
actuated fatigue systems are limited in this regard at higher frequencies.

Inte rrupted Is othermal Fati g ue Tbsts

The maximum applied tensile stress for all intemrpted fatigue tests was 65Vo of the ultimate
tensile stress at the corresponding temperature. This stress level was chosen to yield a fatigue
life that did not exceed 10 days due to time constraints. The temperatures, frequencies, and
stress ratios were consistent with the baseline tests. Baseline curves, changes in modulus, and
in situ surface wave data were all used in the selection of appropriate intemrption poins for
each specimen. The intemrption points relative to fatigue lives of baseline specimens tested
at the same stress level are shown in Fig. 4. The in situ surface wave technique was used to
monitor progressive damage throughout the room temperature tests [3/]. Some of the room
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temperature specimens were interrupted during testing, ultrasonically C-scanned in i*"r.ioo l". j
tanks, and then reinstalled in the fatigue fixture for additional cycling if minimal damase . _
was evident. 

- 
iit.;'

One isothermal fatiguc test was conducted at room temperature to monitor longituOinal'. ',i.;;

waves traveling the length of the specimen. A horizontal, servohydraulic test frame with
specially machined grips for placement of the contact transducers at the ends of the specim!;*ai:
Fig.2b) was used. This test was tension-tension fatigue, run in load-control with a triangular
waveform at a stress ratio of 0.1 and a frequency of I Hz. As with the intemrpted fatigue 

",,',"

tests, the maximum applied tensile stress was 65Vo of the ultimate tensile strength I

Nondestnrctive evaluation of the interrupted specimens was performed to characterize dam- :

age such as matrix cracking, fiber bridging, or cracked fibers. The following methods were ..
used to evaluate each specimen beforc and after fatigue testing: high-frequency scanning
acoustic microscopy, oblique incidence shear waves, reflector plate ultrasonic scanning, immer-
sion surface waves, and X-ray radiography.

Following the nondestructive evaluation of the test specimens, tension tests were conducted
to deterrnine residual strength. All tests were run in load control at a rate of l0 MPa/s ot _.._.-.,,
room temPerature

Failure Analysis

After testing, scanning electron microscopy, metallography, and other destructive methods
were used to characterize fatigue damage. Qualitative and quantitative $ata obtained from
fatigue tests, nondestructive evaluations, and residual tension tests were borrelated with the 

.'--'

observations made during destructive analyses.

Results and Discussion

Feasibility of Nondestrucrtve Tbchniques for Evaluartng Damage Evolution and
Material Behavior

Reflector Plate (Jltrasonic Scannlng-Reflector plate C-scans of Specimen g4-O47 at various
points in its fatigue life are shown in Fig. 5. This specimen was fatigue tested at room
temperature and the testing was intemrpted three limes during fatigue cycling (1000, 1965,
and 3822 cycles at a maximum applied stress of 800 MPa) and ultrasonically scanned (in an
immersion tanh off the load frame). The C-scans were calibrated such that the full-scale
amplitudes (white in these C-scans) in the color-coded scales represented the level of ultrasonic
transmission in a TiG4 specimen of similar thickness. Slight differences in amplitude from
one image to the next represent fypical variances in the calibration process. Regions of
attenuation of the ultrasound oriented perpendicular to the specimen axis are apparent at all
stages of testing and do not appear to change sigaificantly during testing. These regions are
possibly caused by localized bunching of fibers along the width of the specimen as indicated
in Fig. 6 (metallograph of the edge of the sample). Many of the specimens fatigue tested
during this study failed adjacent to one of these attenuated regions. No other anomalies were
evident in the reflection plate scans.

Immersion Surface lilsyss-'lrr.lne.llision surface wave scans of room temperature fatigue
specimens intemrpted prior to failure are shown in Fig. 7. All scans were calibrated such that
the full-scale amplitudes @lack in these C-scans) in the color-coded scales represent the level
of reflecrion from the polished edge of a Sigma/Ti6242 calibration block. Attenuation was
reduced by 12 dB prior to scanning of the actual specimens to increase detection sensitivity.
None of the specimens showed any evidence of surface or subsurface damage prior to testrng.
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FIG' S-Reflector plnte C-scans of Specimen g4-A7 at various points in its fatigue life.

1:X::"1:.r.1*s 
formed (all the cracks nucleated at the edges) during room temperaure fatigueuvcrrDg rn Specimens 94-035 (2237 cycles) and94-042 (316g cyiles) as evidenced bylhetmmersion surface wave scans @lack iegions along the eiges ot oe ru-pt", in Fig. 7). The

i#,c*:,yr:tea 
r.ati.sy sampres, on the other hand, revealed no signs of significant damageurcr o€lDt lnterrupted. one exception is a 500"C baseline sample tesied at a maximum apptJo

::::::::o9lla- 
This particular sample (94-008) was removed from the fatigue rixture afrer

;;:"^",:*g 
lu. u9o cycles due to time constaints. An immersion surface wave scan of this*.prc revealed several surface and subsurface cracks.

1822 c.1$es

rage prior to



\
,  1 . .  " . ;

506 coMPoSITE MATEBIALS: FATIGUE AND FRACTURE

TS:.Yr-sL'r6r TF----!!i * In Sit
obtainei
was tyl
debond-
was als,
investig
decreast
to be du
as cycle
10. Thi
tempere

Somt
of all, t
of the u
to maxi
present
An alig

In sit
frequen
in long,
measur€
decreas,
by lTVc
propert:

Il
cl
3
E
o-
=

o
ut
N

J

=
E
oz

FIG' 9-Oblique incidence shear wave C-scans of two failed Specimens, 94-M6 and gq.l7,
tested at room temperature.

transducer frequency was increased to 50 MHz, the wavelength decreased to 92 mm, butattenuation of the shear wave signal increased, which hinderei data acquisition. In additionto these difFrculties, the undulating nature of the f,rbers made detection -d prop", gating ofthe ultrasonic signal extremely difficult.

i
I '

l - -' ' i : - ' '

I
t _

i

I

l l
I .
t :
t :



BENSON ET AL. ON NONDESTRUCTIVE DAMAGE EVALUATION s07

In Sin Surface and longitudinal Waves-In situ surface wave results were similar to thsse
obtained by Maclellan [31]. A large, initial decrease of the pitch-catch ultrasonic amplitude
was typically seen during the first few cycles and may be an indication of fiber/matrix
debonding. Some spebimbns siibsequeiitly displdj;ed an increase in amplitnde. This observation
was also made by Mackllan [32], although the actual cause of the observation is still being
investigated at this time. Following this slight increase, the transmitted amplitude gradually
decreased until failure occurred. The gradual decrease in surface wave amplitude is believed
to be due to reflection and scattering of the ultrasound from damage developlng in the material
as cycles are applied. A surface wave amplitude plot for Specimen 9+027 is shown in Fig.
10. This specimen, which was cycled at a maximum applied stress of 7da Mpa at rooir
temperature, failed after 4191 cycles.

Some difficulties encountered when using this technique may have affected the results. First
of all, the transmined surface wave amplitude was extremely sensitive to slight movements
of the wedges. In addition, the potential for error exists during the manual alignment of wedges
to maximize the transmitted signal. These practices tnay have contributed totbe variabilitv
present in the surface wave amplitude plots of specimens tested under identici conditions.
An alignment fixture is recommended for futurc testing to ensure stondardization.

In sinr longitudinal wave resurts for Specimen 9+OM tested at room temperature at a
frequency of I Hz are shown in Fig. I I (note the y-axis scales). A comparison between changes
in longitudinal wave amplitude and modulus (measured using exiensometer displacemint
measurements) yielded similar results; however, the normalized results show that the modulus
decreased by apout 3Vo pior to failure, whereas the longirudinal wave amplitude decreased
by lTVo prior to failure. The longirudinal wave amplitude method is clearly more sensitive to
property changes or damage occurring in the material under study, or both.

CYCLE
FIG. 1O-1n situ surface wave amplitude ptot for Specimen 94-027.
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X-Ray Radiography-Reglons of low fiber density and fiber displacement were easily
letected in the X-ray ra$.oer-+trs taten during this study. Additionally, cracks were apparenr
in the Sigma/Ti-6242urttdtre*tional composites using magnification. Thl cracks were detectable
because the fiber breaks appeared as gaps in th- tunlsten core, and all specimens were
unidirectional, which facilitated detection.

Swrnary-111general, reflectorplate method *"s ,oc""s.fut in identifying high fiberdensity
regions caused by bunched fibers. The immersion surface wave techniq;", on tt 

" 
other han4

succeeded in detecting surface and subsurface cracks. Scanning acousti-c microscopy, oblique
incidence shear waves, and X-ray radiography were effective in evaluating RUei atignment
and some favorably oriented fatigue cracks.

Conelating Observed Danage with Residual knsile Strength

Table 2lists the residual tensile strengths and moduli of the intemrpted specimens. This
information is also shown graphically in fig. tZ. The only specimens showing significant
reductions in tensile saength were Specimen 94-035 (2237 cyiles), Specimen gLo+z (ztos
cycles), and Specimen 9+008 (10 000 cycles). These resulrs 

"orrerpond 
well with the findines

of the immersion surface wave scans that revealed the presence of surface and sub-surfafe
cracks in these samples. The reduction in tensile strengttr does not appear to be related to the
number of cracks detected; rather, crack size seems to be more indicative of residual tensile
strength in this particular composite. Specimens showing no evidence of surface or subsurface
cracking possessed residual tensile strengths comparabL with the baseline values.

TABLE2_

Specimen
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9+u8
9+028
9+032
94-03s
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9+038
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TABLE 2-Room kmperature residual tensile stengths and moduti of interrupted fartgue specimens.
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Accumulated

Residual
renslle

Strength, MPa

Mechanically
Measurcd
Modulus,

GPaz
o,

{ ;
:5
N E

o

F5
a Z
{ g

z

).9/+ 94-030
94-048
9+028
9+032
94-035
9+U2
9+M4
9+038
9+039
94-045
94-008

0
0
I

955
)  )a1

3 168
1

l 583
3 369
5 144

l0 000

23
23

23
23
23

500
500
500
500
s00

800
800
800
800
5q
540
540
540
540

t243
1226
t J t  I

t2t3
929
960

1283
1263
1273 .
l t 9 3  \
759 \

I I J

r80
188
180
178
177
r90
t82
r76
186
183

tdulus of Specimen

nent :re easily
:ks rt'cre apparent
<s were detectable
sPecimens were

high fiber densiry
rn the other hand,
3roscoPy, oblique
3 fiber alignment

specimens. This
>wing significant
rcn 94-O42 (3168
with the findings
: and sub-surface
be related to the

rf residual tensile
ace or subsurface
ralues.

1.00

. ROOrit TEMP
o  5 0 0 c

J

gG o.eo
3'A
G,E

F
c)u,
U

i5 o.oo
<tt
= z
!rF
o F
z

- RG. l2-Residuar rens,e strengthsZlTrJ'rrr"*roted farigue specimens.

Damage Mechanisms Involved in Producing Indications During Nondesyuctive Evaluation

.^,,t-l-ntnt-t'ectron microscopy (SEM) of the fracture surfaces of baseline specimens revealedIatlgue cracks that initiated at the fiber/matrix interface una p.opug.i.Joaiuuy outward asdepicted in Fie. 13. This failure mechanism ** a.r".t.a in Lottr ti. ,*- remperature and5o0"C specimins. Failure of the matrix ,u..ounding some fibers apparentry preceded fibertailure and subsequent overload. riuers near ne .Jg., *" more susceptible because constraintsto failure are reduced once rhe .^r.i* ;;;; rJ.r,", an edge. Merailographic analyses of
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FIG. l3-Fractographs of Specimen 94-036 showing fatigue emanating from the fiberlmarrix

interface.
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damaged regions were consistent with SEM findings as shown in Fig. 14. Cracks propagating
away from the fiber/matrix interface are evident.

In order to verify damage detected during nondestructive evaluations, scanning electron
microscopy a1{ metaUogaphy were used to evaluate all intemrpted specimens after the residual
t'ension tests. Little, if any, fatigue damage was detected on tni fractrue surfaces of specimens
that Possessed a residual tensile sffength near 1007o. Minimal fatigue damage was observed
near the fiber/matrix interface of Specimen 94-M5 (5114 cycles, SOO"C) that displayed a slight
decrease in tensile strength. On the other hand, significant fatigue damage was detected on
the fracture surfaces of specimens that displayed a reduction iniensile stringth after fatigue:
Specimen 94-035 (2237 cycles, RT), Specimeng4-M2 (316g cycles, RT), and Specimen*94_
008 (10 000 cycles, 500"C, 500 MPa). Most of the visible fatigue damage was located near
the outer surface of the specimens; however, fatigue damage at the fiber/iratrix interface was
also present. These findings correspond well with the NDE results as well as the residual
tension tess.

Conctusions 
\

The usefulness of ultrasonic nondestructive evaluation to assess fatigue L*"g" in a [0]6Sigma-1240/Ti-6242 composite has been demonstrated through conelati-on of immersion and
in situ ultrasonic data with resirllal tensile strength for the test cond.itions used in this study.
Immersion surface wave scanning proved to be one of the most promising methods'for
correlating fatigue damage with the residual tensile strength for the composite used in this

I

from the Jiberlmatrix

^-Y^G^:|J-Mtcrophotograph showing cracl<s present in Specimen 94-029 fotlowing fatigue failureat 500oC.
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study as summarized in Tables 3 and4. The only intemrpted specimens showing signifrcant
reductions in tensile strength were those found to contain surface or subsurface cracti auring
scanning. Acoustic microscopy, oblique incidence shear wave, and X-ray radiography techl
niques proved to be useful in evaluating fiber displacement and locating favoraUty oriented
cracks. Although reflection plate inspection was unsuccessful in identifying damage produced
during cyclic loading, slight variations in fiber density due to fiber bunching were detected
prior to mechanical testing. In situ surface wave and longitudinal wave methods appeared to
be more sensitive to property changes or damage or both occurring in the material than the
mechanically measured modulus. Scanning electron microscopy and metallography were used

TABLE 3-Conelation of immcrsion surface wave resubs with residual tensile strenpth.
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to verify fatigue damage detected using these methods. Information obtained from nondestruc-

tive evaluations has been used to facilitate early detection of damage during fatigue testing

of MMCs. However, it should be noted that the damage fypes and mechanisms in MMCs will

vary for different rypes of cyclical loading, and, therefore, different types of NDE methods

wili be suitable to detect thise damage types. Further research is essential to bring out the

usefulness of each NDE mettrod to detect various types of damages caused by different types

of fatigue testing methods.
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