Infrared thermographic inspection of murals and characterization of degradation in historic monuments

E.Z. Kordatos a, D.A. Exarchos a, C. Stavrakos b, A. Moropoulou c, T.E. Matikas a,*

a Department of Materials Science and Engineering, University of Ioannina, Greece
b Department of History and Archaeology, University of Ioannina, Greece
c School of Chemical Engineering, National Technical University of Athens, Greece

HIGHLIGHTS

- IR thermography can unveil in-depth defects in murals.
- IR thermography enables nondestructive assessment of damage in cultural heritage monuments.
- Graduate heating thermography is suitable to characterize degradation of murals from distance and in real time.

ABSTRACT

This work presents recent results of infrared thermographic assessment of murals at the “Monastery of Molybdoskepastos” in the Ioannina region (Greece). Infrared thermography is a real-time technique based on monitoring the temperature variation on the surface of materials and structures. This method identifies and interprets differences of surface temperature in the material, enabling the evaluation of damage distribution and accumulation. Infrared thermography is a non-destructive, full field and non-contact technique allowing the characterization of degradation in buildings including historic monuments.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Monitoring the structural safety of cultural heritage monuments is of great importance. Early assessment of murals, frescoes and masonry condition can prevent irreversible damage and can also provide significant information for the restoration and conservation of the monuments. Non-destructive testing and evaluation techniques are the most suitable for this aim. One of the methods used for real time non-destructive monitoring is Infrared Thermography (IRT). It is a full field, non-contact, fairly portable method and its efficiency in the literature is well documented in the investigation of historic structures. IRT is based on the monitoring of object’s surface temperature variation. IR cameras detect infrared radiation emitted by materials and create a thermal image depicting the surface temperature distribution. This thermal distribution is influenced by some physical conditions and material properties such as relative humidity, atmospheric temperature, reflected apparent temperature and material emissivity. The knowledge of materials emissivity is crucial; therefore, many studies on the emissivity of structural materials have been conducted [1–3]. Studies have shown increasing interest in infrared thermography’s methodologies. IRT has been successfully used for the damage assessment of historic structures [4,5] and also for the assessment of conservation materials and techniques such as surface cleaning, restoration of masonry by repair mortar and stone consolidation [6–8]. Moreover, infrared thermography has been applied to detect and disclose artificial and in-depth defects such as cork discs, air-filled plastic bags and polystyrene cuboids [9–11], hidden structures like niches and buried openings [12–14], and substrate features as tesserae on a plastered mosaic and sub-surface mural [6–8,15,16]. In addition, one major advantage of thermography applications is the detection of moisture and rising damp in buildings and masonry structures [5,13,17–22]. It should also be mentioned that IRT is a potent tool for damage characterization such as adhesion of frescos, crack mapping [14,16,23,24], insulation deficiencies [20] and can combine well with one-sided ultrasound for assessment of the depth of defects [23–25].

The historic monument (see Fig. 1) studied in this research is situated north of the city of Ioannina (Greece), in the valley of the river Aos and close to the Albanian borders. It is the monastery of the
The non-destructive evaluation of a structure using infrared thermography can be achieved by two different approaches, the passive and the active. Active thermography is based on the thermal excitation of the specimen inspected in order to obtain significant temperature differences witnessing the presence of subsurface defects. In this study, three different active thermographic methods have been used to damage characterization of Monastery of Molybdoskepastos’s dome and detect in-depth defects on donor’s inscription.

2.2. Experimental setup

The experimental setup included four lamps (4 x 1 kW) powered with direct current of 0–10 V range for the heating procedure, a control unit for image processing, a lock-in amplifier and two different types of IR cameras. In Fig. 3, the on-site experimental setup can be observed.

In order to achieve the best monitoring of inspected areas structural integrity, two different IR cameras with different bands of infrared spectrum have been used.
Lock-in and pulsed phase thermographic methods conducted with a mid-wave-length infrared camera (MWIR) CEDIP which has a cooled indium antimonide (InSb) detector (3–5 μm). The frame rate for the experiments of this research was 100 Hz. Moreover, thermographic images have a format of 320 (horizontal) × 240 (vertical) pixels. The noise equivalent temperature difference of this camera is under 25 mK and the optical lens which has been used has 50 mm focal length.

In the “graduated heating thermography” method a long wavelength infrared camera (LWIR) Flir T360 has been used. The LWIR camera has a spectral range of 7.5–13 μm and an uncooled microbolometer sensor. The noise equivalent temperature is under 60 mK. In addition, the optical lens which was adapted to this camera has 18 mm focal length.

Furthermore, the under examination murals do not have a specific emissivity value due to the surface heterogeneity, therefore according to the literature a mean value of 0.75 emissivity has been used.

3. Results and discussion

At the monastery of “Molybdoskepastos” non-destructive evaluation was applied for the assessment of damage characterization. IR thermography inspection was preceded by optical observation
of the monastery indoor space in order to detect specific areas with critical damages and substantial historical importance.

One of the areas that have been inspected in this survey is the dome of the monastery (Fig. 4a). Considering the fact that the dome is five meters above the floor, it is very difficult an optical inspection to be applied. Therefore, “graduated heating thermography” was used for the damage characterization of this mural. On the photograph (see Fig. 4a) there are many critical and surface cracks, while on the thermograph (Fig. 4b) the severity of the cracks can be observed. The visible crack is indicated with yellow circles in both Fig. 4a and b. Moreover, in Fig. 4b additional cracks which are hardly visible, show up clearly in the thermograph and are pointed out with red circles. In addition, comparing the Fig. 4a and b can be deduced that cracks indicated with red circles are not only surface damages but they are as critical as the cracks with yellow circle. This can be assumed from the same temperature variation illustrated in both types of cracks which is clearly indicated with exact temperatures of the spots in Fig. 4b.

Additionally, the infrared thermography inspection revealed the existence of delaminations and detachments on the mural of the dome. To elucidate this, the accumulated heat in the part of the mural that can be observed in Fig. 4c, indicates that this part of the mural has been detached. This extended detached area is marked with white dot-line circle in Fig. 4a and c. In order to further highlight the remarkable temperature variation in the delaminated area, the three dimension (3D) temperature map was plotted (Fig. 5) from the extracted thermographic data.

Fig. 5 illustrates the distribution of inspected area temperatures in a 3D graph. The xy surface in the graph shows the pixels of the thermograph and the z axis indicates the temperature of each pixel. The detached area is depicted with grey and black colors which correspond to the temperature range of 34–40 °C.

The thermographic inspection of the mural on the dome resulted that this area requires immediate restoration in order to prevent additional irreversible damage.

Another area of interest that has been examined is the donor’s inscription above the west gate of the church. Donor’s inscription provides very useful information about the year of church’s foundation and further historical details. A part of this inscription has been destroyed as it can be seen in Fig. 6. The inspected area was chosen near the destroyed part of the inscription in order to assess the possible existence of further damage (see in Fig. 6 red circle).

The donor’s inscription was evaluated with LWIR and MWIR cameras employing all the aforementioned thermographic methods. Concerning the graduated heating thermography method, the increment of the temperature near the area of the destroyed part of the mural discloses three detached regions (indicated by black arrows) as it can be seen in Fig. 7a. The region indicated with red arrow corresponds to the destroyed area in which has been revealed an older donor’s inscription (see Fig. 6). In this region, an increment of temperature can be observed. This is due to the different depth and material type. Therefore, this indication in the thermograph was not considered as subsurface damage or delamination. The experimental data of the thermograph in Fig. 7a was also illustrated in a 3D temperature mapping plot. As can be noticed from the Fig. 7b, the black areas corresponded to the range of 23–24 °C reveal more clearly the presence of delamination and detachments.

The second method that had been applied was the lock-in thermography which has been contacted by a MWIR camera. In Fig. 8 it can be observed an assortment of different shape and geometry patterns due to the phase variation depicting the substances of the fresco used to paint the mural, such as straws, wires and gravel. The implementation of this method has resulted in the better assessment of the fresco’s substances.

The mid wavelength infrared band has been used in the third thermographic method. Pulsed phase thermography revealed very interesting results concerning the in-depth defects. Fig. 9 depicts the digital photo and the phase thermographic image of the inscription. According to the IR image (Fig. 9b) the magenta spots correspond to subsurface defects not visible in the digital image (Fig. 9a). These intense variations in the obtained thermographs can be attributed to the historical elements. To elucidate this, in one indoor area of the church, where some murals were partially destroyed, preexistent murals have been revealed. As it can be
observed in Fig. 10, there is presence of holes caused by hagiographers in order to fasten up the new murals. More specifically, the magenta subsurface defects shown in Fig. 9b correspond to a significant variation in phase of about 5 degrees compared to the phase of visible letters. These spots of Fig. 9b have not the same shape or geometry with the holes of Fig. 10 due to the fact that the holes beneath the inscription are partially filled with fresco. In addition, it should be mentioned that the holes were made by hand, therefore their orientation do not follow an exact pattern. Therefore, the PPT has the potential to detect in-depth defects.

4. Conclusions

This study demonstrates that IR thermography is a powerful method enabling nondestructive assessment of damage in cultural heritage monuments. Specifically, this full-field method is suitable to characterize degradation of murals from distance and is a useful tool to draw conclusions in real time about the state of damage in historic monuments. This work led to interesting results about the inscription, enabling the damage evaluation and characterization. Furthermore, the thermographic assessment of the mural on the roof resulted in valuable findings such as critical surface and sub-surface cracks, and extended detached areas causing concern about its structural integrity. However, further work should be done in the identification of in-depth defects applying an addition NDE method such as ultrasonic to compare and establish these findings.

References

[27] Papadopoulo B. Η Βυζαντία και η ευρύτερη περιοχή το 12ο αιώνα. Κονιστα 1996 [in Greek].
[28] Tsouros K. Ο κεραμικοπλαστος των υστεροβυζαντινων μνημείων της Μονής της Βασίλειας Ελεος, Kavala 1988. p. 10; 1; 3; 49–50; 104–7; 21; 49; 51; 76 [in Greek].