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A geometry-invariant fracture law for
ceramic matrix composites

Konstantinos G Dassios

Abstract

This paper reports the development of a generalized fracture law that can assess the mechanical behavior of ceramic

matrix composites (CMCs). The established law differs from conventional bridging laws in that it accounts not only for

the bridging effect but also for all major energy dissipation mechanisms including matrix cracking and fiber pull-out. As

such, the formulation can be used to directly assess the original, experimentally recorded, fracture behavior of the

material in the load-extension domain. The established expression successfully approximated the experimental load

versus beam deflection (P-u) curves of a SiC-fiber reinforced glass-ceramic matrix composite tested under the single-

edge-notched beam (SENB) configuration. The fracture law was found to be geometry-invariant by comparison with

results from tensile specimens with radically different damage zone geometries. A parametric analysis is presented which

demonstrates the potential of the model in the a priori prediction of the fracture behavior of hypothetical CMCs with

similar fracture characteristics.
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Introduction

Silicon carbide (SiC) fibers are one of the most prom-
inent types of reinforcement used in continuous fiber-
reinforced ceramic matrix composite (CMC) materials,
naturally predestined for high-temperature applications
with increased thermo-mechanical performance
demands in hostile oxidative environments.1,2 The low
density, high damage tolerance, and superior tribo-
logical properties of SiC-fiber reinforced CMCs are
exploited today in applications such as aerospace and
aircraft thermo-structural components, hot structures
of launch vehicles, nose caps, nozzle jet vanes, engine
flaps, and advanced friction systems.3 Most of the
desirable properties of such CMCs are a result of the
crack propagation resistance offered by energy dissipa-
tion phenomena such as fiber bridging and pull-out that
develop during their fracture.4

Due the dependence of conventional fracture mech-
anics descriptors, such as the crack growth resistance
(R-curve), on specimen geometry and loading condi-
tions, such analyses cannot constitutively approach
the fracture behavior of CMCs.5–7 A continuum
approach is generally followed to intrinsically model

such behaviors, by introducing a continuous bridging
stress profile �br(�), called the bridging law, where the
bridging stresses depend on the local crack opening dis-
placement �.8–11 While the bridging law approach is
ideal for quantifying the contribution of the bridging
phenomenon to the overall fracture behavior, a gener-
alized expression that also considers the effect of matrix
micro-cracking and pullout on the total energy dissi-
pated during composite fracture has been proposed
for simplified geometries and crack opening scenarios
such as the tensile stretching of Double-Edge-Notched
(DEN) specimens.12 In the original formulation, the
analytical expression of the generalized fracture law,
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�(�), was expressed using the weakest link statistical
concepts and rational boundary conditions as12
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where k is the fraction of fibres effectively contributing
to pull-out (e.g. k¼ 0.5, for a symmetrically stacked
laminate) and the three terms within the brackets are
the individual contributions of the matrix, intact fibers
and pull-out fibers.

The purpose of this work is to provide a fracture law
formulation that will be directly applicable to the load-
ing configurations typically used for fracture toughness
measurements – such as the single-edge-notched beam
(SENB) specimen – where the bridging and damage
zone constantly change shape during testing.
Analytical and rational procedures are employed in
order to establish an analytical expression for the
load-deflection (P-u) behavior of the SENB geometry
while keeping consistent with the micromechanics of
damage developed for simple geometries. The resulting
analytical expression was successful in assessing the
experimental P-u curves of SENB specimens of differ-
ent initial notch-to-width ratios within the pure-tension
regime, i.e. before the appearance of compressive zone
effects in the curve. The potential of the proposed law
as a geometry-invariant fracture descriptor for CMCs is
discussed in the text. A statistical analysis is also pre-
sented that shows how the law can be used to predict
the P-u behavior of CMCs without the need of testing.

Experimental

Material

The composite material used in this study consists of
silicon carbide (SiC) fibers, grade Nicalon (Nippon
Carbon Co. Ltd., Japan), in a brittle glass-ceramic
matrix. The weight stoichiometric composition of the
fibers, which have been fabricated by pyrolytic poly-
merization of polycarbosilane, is 56.6% silicon,
31.7%, carbon and 11.7% oxygen. Table 1 presents
major properties of the fibers, as reported by the
manufacturer.

The glass-ceramic matrix was a mixture of magne-
sium oxide (MgO), aluminum oxide (Al2O3), sili-
con oxide (SiO2), and lithium oxide (LiO2), hereon
denoted MASL. The matrix, initially prepared through

the sol-gel route, was used to impregnate 12 laminated
fiber preforms stacked in a symmetrical [0/90]s
sequence. The final composite was received in the
form of laminated plates of thickness 3.0mm, after sin-
tering at �1300�C under inert gas environment.

The elastic modulus of the MASL matrix, 70–
75GPa,13 is three times less than the corresponding
value for the fibers. In such a system, matrix cracking
is expected to initiate at low loads and the bridging
effect is expected to be considerable.14 Table 2 presents
key properties of the composite under investigation.15

Specimens

Single-edge-notched beam (SENB) specimens were pre-
pared from the SiC/MASL plates in a vertical machin-
ing center (Rambo Machinery Co., Ltd., Taiwan) using
a diamond wafering blade suitable for use with hard
ceramic materials (Buehler Series 5 LC Diamond, #11
– 4298, Buehler Co. Ltd., IL, USA). The same blade
was used for the construction of the notches. The notch
root radius obtained was ca 250 mm. To avoid crack
tip blunting, notch root sharpness was promoted with
the help of a surgical scalpel (see also Figure 2).

Table 1. SiC Nicalon fiber properties.

Property Value

Diameter (mm) 12–14

Density (g/cm3) 2.55

Tensile strength (Mpa) 3000

Elastic modulus (GPa) 220

Failure strain (%) 1.4

Specific heat capacity (J/g�C) 0.71 (25�C)

1.17 (500�C)

Coefficient of thermal

expansion, 10�6/�C

3.2 (25–500�C)

Table 2. Main properties of the SiC/MASL composite.14

Property Value

Fiber volume fraction (Vf) 0.33

Apparent density (g/cm3) 2.50

Longitudinal elastic modulus (Gpa) 123

Poisson’s ratio 0.23

Coefficient of thermal expansion,

10�6/�C (20–1000�C)

� Parallel to the fibers 3.4

� Normal to the fibers 1.7
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The preparation of the samples was performed in a
manner that ensured that the external fiber plies were
oriented perpendicular to the loading direction and
crack propagation. Various notch lengths (�0) were
used in order to obtain notch-to-width ratios (�0/W)
of 0.4, 0.45, and 0.5. Three-point bending tests were
carried out under crosshead displacement control with
a rate of 0.01mm/min, on a servo-hydraulic testing
frame (MTS� 858, MTS Systems Corporation,
Minnesota, USA) equipped with a 25 kN load cell.
The geometrical characteristics of the SENB specimens,
chosen to satisfy plane strain requirements, are given in
Table 3.

Results and discussion

Formulation of generalized fracture law

In the SENB geometry testing, composite fracture is
associated with the formation of a dominant macro-
crack that starts at the notch root and propagates in
a plane parallel to the loading plane. The total stress
intensity of this system, denoted JP(�), can be
expressed as the sum of two contributions: the fracture
toughness of the matrix, J�,0, and a contribution relat-
ing to the energy dissipated during fracture, J�(�)

KPð�Þ ¼ K�,0 þ K�ð�Þ ð2Þ

For very brittle matrices, such as the glass-ceramic
MASL of the composite under consideration, J�,0 is
negligible, hence equation (2) can be rewritten as

KPð�Þ ¼ K�ð�Þ ð3Þ

For the SENB geometry and plane strain conditions,
JP(�) as well as the differential stress intensity factor
due to bridging, dJ�(�, x), are given as a function of
position x, along the crack propagation path by the
following equations:16

KPð�Þ ¼
3Pð�ÞS
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where �(d) is the stress profile as a function of the local
crack opening displacement �, G(�/W, x/�) is a non-
dimensional factor that depends on specimen geometry
as well as on the position along the crack propagation,
x, and F(�/W) is the non-dimensional geometry correc-
tion factor for the SENB configuration. The mathem-
atical expressions for both factors G(�/W, x/�) and
F(�/W) are given in the Appendix.

Equation (5) implies that calculation of the total
stress intensity factor due to energy dissipation during
fracture, J�(�), requires integration of the stress profile
�[�(�, x)] over the position along the crack propagation,
x. The profile �[�(�, x)] can be assumed equal to the
analytical expression previously established for simpli-
fied geometries, equation (1), because a 1:1 correlation
exists between the crack opening displacement, �, mea-
sured in tensile tests (where � is constant at each pos-
ition along the bridging zone) and the displacement
�(�,x) of the SENB geometry which varies linearly
with the position x along the bridging zone. This
claim is explained in the following and depicted sche-
matically in Figure 1.

During SENB testing, crack opening displacement,
�, varies as a function of position x along the crack, �,
between zero and a maximum value measureable as
COD as the notched end of the specimen (Figure 1a).
If this function is a simple linear equation, i.e. if the
bridging zone has a triangular form, the following
equation will hold

�ð�, xÞ ¼ 2cð�� xÞ, a0 � x � a ð6Þ

where c is the slope of the crack opening displacement
profile. For each displacement value, �exp, measured
during SENB testing, a range of �i(�,x) is defined
with values that vary linearly between zero and �exp
within the triangular bridging zone. Each of these
values are directly analogous to the displacements
�exp,i measured during testing of a simple tensile speci-
men (constant-profile bridging zone, Figure 1(b)).

Based on the above argumentation and equations (4)
and (5), the following expression can be written

3Pð�ÞS
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Solving equation (7) for P(�) leads to

Pð�Þ ¼
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Table 3. SENB specimen dimensions.

Dimension Value in mm

Specimen width, W 5.0

Specimen length, L 40

Specimen thickness, t 3.0

Support span, S 35
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If the slope c is known, the fracture law �[�(�, x)] can
be integrated in order to obtain the function P(�). If the
u(�) function is also known, the analytical P-u curve
can be calculated.

For the calculation of parameter c, i.e. the slope of
the triangular bridging zone, the following method-
ology was adopted. During an early loading stage of
a SENB specimen (in every case at instances before the
maximum load was attained), the imposed crosshead
displacement was paused. The instantaneous crack
length, D�, and COD at x¼ �0, �max would be mea-
sured using an inline microscope with a known step-
motion capability.17 Assuming a symmetric triangular
bridging zone shape (isosceles triangle), slope c was
calculated from the result of the division �max/D�.

For the calculation of the u(�) function, we consider
that the total deflection of the SENB specimen,
u, can be expressed as the sum of two contributions:
a contribution associated with the beam’s elastic bend-
ing, uel, and a contribution related to crack

propagation, uinel. The primer term is given by classic
theory of elasticity as

uelðPÞ ¼
PS3

4EtW3
ð9Þ

where E is the composite’s elastic modulus in the lon-
gitudinal direction. The inelastic contribution has been
calculated as18

uinel½�ð�,xÞ	 ¼
3S

W2

Z�

0

1� 2
x

W

� �
� �ð�, xÞ � dx ð10Þ

Then, function u(�) can be written as

uð�Þ ¼
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Having experimentally established functions P(�)
and u(�) by integration of the crack opening function

Figure 1. Geometrical relationships between the crack opening displacements, �, in DEN(T) and SENB geometries. The bridging

zone is shown in grey color. At sequential time instances, t¼ 1 and t¼ 2, only one dimension of a DEN(T) bridging zone changes.
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d(�, x) as per equations (8) and (11), the analytically-
expected P(u) behavior of each SENB specimen is the-
oretically feasible by function composition. However,
due to the complexity in the expressions for the F(�/W)
and G(�/W, x/�) factors, it was not possible to estab-
lish an analytical expression for P(u) by elimination of
crack length � between P(�) and u(�) (equations (8) and
(11)). The theoretical P(u) curves were alternatively
constructed by interrogation of discrete experimental
values. The total crack length was divided into a large
number of discrete segments, and for each crack length
value, a P and u value was calculated from equations
(8) and (11). In this manner, pairs of P(u) are obtained
for each �.

The fracture behavior of the particular composite
has been found to be consistent with the formation of
a dominant macrocrack that starts at the notch root
and propagates within the material to give rise to
intefacial debonding, fiber bridging, sliding, and pull-
out.14,17 The behavior was verified for the SENB geom-
etry of the current study by post-mortem observations
of the failed ligaments of the samples after three point
bending tests. As seen in Figure 2, material fracture is
associated with the formation of a dominant macro-
crack around which energy dissipation mechanisms
such as fiber bridging and pull-out evolve. This obser-
vation in combination with the absence of delamination
validate the applicability of the established formulation

to the fracture behavior of the composite under
investigation.

Figure 3 represents typical experimental load versus
beam deflection (P-u) curves of SiC/MASL SENB spe-
cimens with three different notch-to-width ratios,
plotted against the analytically expected counterparts.
The material properties entering equations (8) and (11)
have been established earlier for the specific SiC/MASL
composite12 and are presented in Table 4. It is observed
that the theoretically expected behavior that incorpor-
ates the generalized fracture law closely approximates
the experimentally recorded values for the biggest part
of the curve. However, it is obvious that the model
cannot follow the experimental data at deflections
larger than 0.45–0.5mm. This is because the behavior
observed in this regime is related to the naturally
expected compressive zone that develops on the back
face of SENB specimens. Such a feature has not been
accounted for in the analysis, hence neither equation (8)
nor equation (11) is expected to be able to assess it. The
most important conclusion that can be drawn from the
observed agreement between the experimental and ana-
lytical P-u curves concerns the geometry-invariance of
the fracture law. If the fracture law is successful in
assessing the fracture behaviors of two independent
specimen geometries with completely different damage
zones and crack opening scenarios, such as the DEN
tension specimen and the SENB specimen, then it is a

Figure 2. Post-mortem micrographs of the failed ligaments of SENB SiC/MASL samples. (a) micrograph of whole ligament illustrating

notch, damage zone, and bending-bound compressive damage on back face. (b) Magnified micrograph of damage zone illustrating

dominant macrocrack and fiber bridging, pull-out, and crack deflection.
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geometry-, hence also dimension-invariant relation that
constitutively governs the fracture of the CMC material
under investigation. Such a relationship can be used as
a standalone tool for predicting material damage with-
out the need of testing. The proposed law can, however,
assess only those fracture behaviors that exhibit the
energy dissipation mechanisms it assumes; for example
it cannot be used to predict fracture under compressive
loads where failure is governed by shear mechanisms
and buckling of fiber blocks. The potential of the

established law as a prediction tool is investigated in
the following.

Fracture law as a prediction tool

For design and modeling purposes, it is relevant to
examine whether the geometry-invariant fracture law
is also successful in a priori predicting the load-
displacement curves of hypothetical materials with
similar fracture characteristics as the composite under
investigation. In fact, if all parameters entering equa-
tions (1) and (8) are known for a specific system, the
analysis can provide a valid load–displacement behav-
ior, possibly rendering characterization through mech-
anical testing unnecessary.

To demonstrate this potential, the law was used to
predict the mechanical response of three hypothetical
scenarios relating to composite systems with different
energy dissipation capacities. In the first case, the
material is assumed to exhibit negligible bridging;
reinforcements fail massively within the matrix soon
after matrix cracking completes. The system is modeled
by employing a large Weibull shape parameter, af¼ 20
for the fibers, allowing for a narrow failure distribution.
The second case concerns a composite with minimal
energy dissipation due to pull-out, modeled using a
small mean pull-out length value of Lp¼ 50 mm. The
third material is a composite with strong interface
and is modeled using a high value for the interfacial
shear stress, �¼ 10MPa. A 12-mm wide, 2-mm thick
specimen with 0.4 notch-to-width ratio is assumed.
The corresponding predicted load–displacement
curves are shown in Figure 4.

The effect of the bridging mechanism in the overall
fracture behavior of a CMC is demonstrated in
Figure 4(a). The absence of the particular mechanism

Figure 3. Comparison of modeled P-u fracture laws across raw experimental data for SENB specimens with W¼ 5.3 mm and three

different notch-to-width ratios: (a) �0/W¼ 0.4, (b) �0/W¼ 0.45, and (c) �0/W¼ 0.50.

Table 4. Material and specimen properties

required by the analytical fracture law.

Parameter Value

Specimen parameters

l¼ S (mm) 35

Rf (mm) 7

Vf (�) 0.35

Fibre properties

Ef (GPa) 207.9

k (�) 0.5

af (�) 2.528

bf (mm) 0.0952

�� (mm) 0.0193

Matrix properties

Em (GPa) 69.5

am (�) 1.889

bm (mm) 0.0366

Interface properties

� (MPa) 3.04

Lp (mm) 570
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leads to a sharp decrease in intact fibre contribution
and to an almost linear-elastic mechanical behavior
up to fracture. Hence, the energy dissipation potential
of the bridging mechanism is critical in controlling the
composite failure mode. However, since the pull-out
mechanism has not been neglected, the specimen separ-
ates with progressive fibre ends disengaging from the
matrix environment, giving rise to exponentially
decreasing frictional forces.

The effect of pull-out on the macromechanical
response of the composite is shown in Figure 4(b).
The frictional ‘‘tail’’ of the curve is not present and
composite load appears to decrease smoothly, as brid-
ging fibres progressively fail within the crack flanks.

The dramatic effect of the interface on the mechan-
ical performance of the composite is demonstrated in
Figure 4(c). A three-fold increase in the value of the
interfacial shear strength leads not only to a 100%
increase in the maximum load but also to a radical
increase in the energy dissipation potential of the
material after that point. The above observations indi-
cate the cautiousness that should be exerted when mea-
suring and reporting composite constituents’
properties, and mainly those of the interface, that con-
trol the expected performance of the model in predict-
ing the macromechanical behavior of similar materials.

Of equally important interest for design and model-
ing purposes is the investigation of the effect of material
properties on the composite’s overall mechanical
behavior as predicted by the established fracture law.
Figure 5 presents the sensitivity of the macromechani-
cal response on six major composite properties, namely
fiber elastic modulus, fiber Weibull shape and location
parameters, fiber volume fraction, pull-out length, and

interfacial shear strength. Each property is perturbed
around four different values with all remaining proper-
ties taking values from Table 4. To facilitate perception
and comparison with previous plots, in each case, one
of the two intermediate values corresponds to the par-
ticular composite under investigation (property value as
per Table 4). These ‘‘baseline’’ behaviors are plotted in
Figure 5 as solid red lines. It is observed that material
strength (maximum load) is affected by all of the inves-
tigated properties while the bridging potential of the
material is influenced mainly by fiber modulus and
fiber Weibull parameters. On the other hand, the
same parameters do not affect the pull-out potential of
the material. The information contained in Figure 5 is
multifaceted and the plots can be useful in property
selection for developing custom materials based on
design criteria. For example, an application that
requires maximum energy dissipation potential
around the maximum strength and small plasticity
would require a combination of high elastic and weibull
moduli and small pull-out lengths (Figure 5a,b,c). On
the other hand, an application requiring extended duc-
tility may require a tougher interface combined with
large pull-out lengths and fibers with small Weibull
modulus. A large number of analogous combinations
are made possible by examining the macromechanical
behaviors depicted in Figure 5.

Conclusions

A geometry-invariant law that successfully assesses the
fracture behavior, at the load-extension domain, of
CMCs exhibiting energy dissipation phenomena such
as matrix cracking, bridging, and pull-out, has been

Figure 4. Predicted load–displacement curves and individual contributions of composite constituents for materials with different

energy dissipation characteristics.
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analytically established and validated across experi-
mental data of three-point bending tests on SENB spe-
cimens. The generalized fracture law is shown capable
of directly assessing the original P-u and P-� response
of the material as it accounts for all energy dissipation
contributions to the total behavior. Interfacial shear
strength was identified as the key parameter dominat-
ing the fracture behaviour of CMCs. The fracture law
was shown capable of predicting the load–displacement
behavior of hypothetical CMC materials with known
physical and mechanical properties. If nine specific
material properties are known for a particular material
system, an analytical fracture law can be obtained that
renders mechanical testing unnecessary. The potential
of the established law in material property selection
based on application design criteria was also
demonstrated.
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Appendix

Notation

af fibers Weibull shape parameter
am matrix Weibull shape parameter

bf fibers Weibull location parameter
bm matrix Weibull location parameter
Ef fibers Young’s modulus
Em matrix Young’s modulus
k pull-out-effective fiber fraction
l gauge length

Lp mean pull-out length
P load
Rf fiber radius
S SENB specimen support span
t specimen thickness
u beam deflection in 3-point bending
Vf fiber volume fraction
W SENB specimen width

� crack length
�0 SENB specimen notch length
� crack opening displacement
�* characteristic crack opening displace-

ment at first fiber failure
�br(�) bridging stress distribution (bridging

law)
�(d) generalized fracture law
� interfacial shear strength

Appendix

The expression forH(�/W, x/�) for the SENB specimen
geometry is given by18

H
�

W
,
x

�

� �
¼

gð�=W, x=�Þ

1� �
W

� �3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

�

� �2q ð12Þ

where

gð�=W, x=�Þ ¼ g1ð�=WÞ þ g2ð�=WÞ �
x

�

þ g3ð�=WÞ �
x

�

� �2
þg4ð�=WÞ �

x

�

� �3
ð13Þ

g1ð�=WÞ ¼ 0:46þ 3:06
�

W
þ 0:84 1�

�

W

� �5

þ 0:66
�

W

� �2
1�

�

W

� �2 ð14Þ

g2ð�=WÞ ¼ �3:52
�

W

� �2
ð15Þ
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g3ð�=WÞ ¼ 6:17� 28:22
�

W
þ 34:54
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F(�/W), the non-dimensional geometry correction
factor for the SENB configuration is given by19

f ð�=WÞ ¼
�
�1=2

1þ 2�=Wð Þ 1� �=Wð Þ
3=2


 1:99� �=Wð Þ 1� �=Wð Þ½


 2:15� 3:93�=Wþ 2:7�
2	

W2

� �i
ð18Þ
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