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In the present work we deal with the scattering dispersion and attenuation of elastic waves in
different types of nonhomogeneous media. The iterative effective medium approximation based on
a single scattering consideration, for the estimation of wave dispersion and attenuation, proposed in
Tsinopouloset al, [Adv. Compos. Lett9, 193—-200(2000] is examined herein not only for solid
components but for liquid suspensions as well. The iterations are conducted by means of the
classical relation of Waterman and Truell, while the self-consistent condition proposed bst l§im

[J. Acoust. Soc. Am97, 1380-13881995] is used for the convergence of the iterative procedure.
The single scattering problem is solved using the Ying and Truell formulation, which with a minor
modification can accommodate the solution of scattering on inclusions in liquid. Theoretical results
for several different systems of particulates and suspensions are presented being in excellent
agreement with experimental data taken from the literature2004 Acoustical Society of America.
[DOI: 10.1121/1.1810273

PACS numbers: 43.38.Ja, 43.38.KbHB] Pages: 3443-3452

I. INTRODUCTION scalar wave propagation through a medium containing iso-
_ tropic scatterers. Later, Laextended the work of Foldy and
~When a plane wave travels through a suspension of pagroposed a new dispersion relation for multiple wave scat-
ticles like particulate compositesolid particles in solids  tering by anisotropic scatterers. In both works the wave dis-
liquid suspensiongsolid particles in fluig, and emulsions  persion and attenuation was represented via a frequency de-
(fluid |n.cIu'3|ons in fluuj,.multlple scattering occurs and part pendent complex wave number expressed in terms of the
of the incident energy is transferred to the scattered fieldSparticle concentration and the forward far field scattering am-
Parameters such as the frequency of the incident wave, thgitude taken from the solution of the single particle wave
relapve position among the partlt_:les, the geometry of t_hescattering problem. The results of Lax were further improved
particles and the material properties of both matrix and iNby Waterman and Truell, Twersky? Lloyd and Berry’
clusions affect the amount of this energy. Thus, although/aradanet al® and Javanaux and Tonfasho derived dis-
matrix and particles can be nonattenuative, the amplitude ?grsion relation expressed in terms of the particle concentra-
waves propagating through suspensions decays and the Ggsn and the forward as well as the backward scattering am-
cay rate is frequency dependent. For a plane wave the dec@yityde of the single scattering problem inserting thus the
of its amplltudg is expressed via a frequepcy depe.n.dent ©%ontribution of the back-scattering to the multiple scattering
ponential coefficient known as an attenuation coefficient. Orbrocess.
the other hand, the size of the particles as well as the material  The apove mentioned multiple scattering theories have
mismatch between particles and surrounding medium implyeen extensively exploited by many investigators in order to
that the dynamic behavior of the composite medium isgypjain wave dispersion and attenuation observed in experi-
strongly dependeq on the_excnatlon frequency of the quenitnents dealing with wave propagation in nonhomogeneous
wave. Macroscopically this means that the phase velocity Ofjigs and solids. Here one can mention the representative
a plane wave traveling through a suspension of particles i§,qks of Sayers and SmifhLedbetter and DattiNorris 1
frequency dependent. This phenomenon is known in the lita nson and Chiver& Shido et al.22 Lu and Liaw?® and
erature as wave dispersion. . _ Challis et all* for particulate composites, the works of
The quantitative determination of dispersion and attenuy,imeset al.15 Mobley et al,'® Meulen et al,*’ for elastic
ation of a plane wave, caused by a random distribution of5ticles in liquid suspensions and the works of McClemens
inhomogeneities, is a problem which has been studied inteng4 Povel and McClemer for emulsions. In most of
sively either theoretically or experimentally by many inves-hege articles, spherical inclusions are considered while the
tigators in the past. The first important theoretical work N field parameters of the single particle wave scattering
the subject is that of Foldywhq, employing a configura- ,roplem, used in the dispersion and attenuation expressions,
tional averaging procedure, derived a dispersion relation fof mainly taken from the works of Epstein and Caffdar
emulsions, Allegra and HawléY for elastic particles in a
3Electronic mail: polyzos@mech.upatras.gr liquid continuum and Ying and Truéfl for suspensions of
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solids in solids. Comparisons showed that, for cases of pathe effective medium approaches of Anson and Chiffrs,
ticulate composites with a significant mismatch between thédiemar et al.,** Cowan et al,*> McClements et al** and
physical properties of particles and matrix, the aforemenHipp et al**“® and the coupled-phase models of Harker
tioned multiple scattering theories predict well only for very et al,*® Atkinson and Kytomad and Evans and
low concentrations of particledess than 10% while their  AttenborougH?® Comparisons with experimental results have
prediction efficiency, in terms of particles concentration, carshown that the self-consistent models are those which are
be improved in cases of nonhomogeneous solids with smallble to predict satisfactory the behavior of a wave pulse
differences in the physical properties of the material constitupropagating within a dense distribution of particle-scatterers.
ents. On the other hand, the simple multiple scattering theo- Recently, Kimet al®” presented a modified version of
ries of Foldy! Waterman and Truélland Lloyd and Berry  the coherent potential approximatiét,°2in order to predict
enhanced by the Epstein and Carffa@nd Allegra and the speed and the coherent attenuation of an elastic wave
Hawley” models, where besides the interaction of thepropagating in a medium containing randomly distributed,
spherical particle with the incident wave, heat transport phesolid spherical inclusions. The frequency dependent effective
nomena between particles and surrounding medium are takestiffness and density of the composite are obtained by solv-
into account, provide reasonable predictions for liquid susing a system of three nonlinear volume-integral equations in
pensions and emulsions with concentrations up to 20%. Thiwhich, however, the interior dynamic displacement field of a
is an expected result since, due to mode conversion, multiplsingle inclusion immersed in an infinitely extended effective
scattering effects are more pronounced in solid than in liquidnedium must be knowr priori. Although in their theory
suspensions. Eventually, one can say here that none of the sorrelations among the scatterers are neglected, their results
far mentioned theories is able to provide acceptable wavevere in a good agreement with experimental observations.
dispersion and attenuation predictions for all the types of  Kanaunet al® claim that the application of this effec-
suspensions and for a wide range of particle concentrationtive medium scheme for wave propagation problems is ques-
and wavenumbers. tionable, since matrix and inclusions play quite different
Besides the aforementioned fundamental multiple scatroles in the process of wave diffraction. However, scattering
tering procedures, many analytical semi-analytical and nueccurs due to the interaction of the incident wave with the
merical models for predicting wave dispersion and attenuarandomly distributed particles. Thus, considering inclusions
tion in nonhomogeneous media have been proposed in thend matrix as scatterers the surfaces of which have opposite
literature. Among them, the methodologies applied for bothunit normal vector, the self-consistent hypothesis of Kim
solid and liquid suspensions can be grouped into two categeet al>’ seems to be quite reasonable
ries. In the first category belong the works that provide dis-  Later, Tsinopoulogt al® proposed an iterative effective
persion and attenuation expressions by means of thmedium approximationlEMA) combining effectively the
Kramers—Kroning relations. Representative works are thosself-consistent model of Kiret al*” and the simple multiple
of Beltzer et al?® and Beltze?* for particulate composites scattering theory of Foldy.In their work, the evaluation of
and the works of TemkiA®> Ye?® and Leandé' for suspen- the wave speed and attenuation coefficient was accomplished
sions, while an excellent mathematical description and derithrough a practical and simple iterative procedure avoiding
vation of Kramers—Kroning relations can be found in thethus the solution of complex nonlinear systems of equations
work of Weaver and Pa®. However, as it is mentioned in such those required in the approximation of Kénal. More-
the book of Zhang and GrdSsand noted in the paper of over, comparing the estimations provided by the two meth-
Temkin®® Kramers—Kroning relations provide satisfactory ods, IEMA appears to be more efficient and accurate in cases
results only for low concentrations of particles while one ofof highly concentrated elastic mixtures.
the quantities phase velocity and attenuation coefficient Here, the IEMA of Tsinopoulost al*8is properly modi-
should be known independently. The second category corfied and improved in order to predict well wave dispersion
cerns the self-consistent theories. According to these the@and attenuation in particulate composites, particle suspen-
ries, the frequency dependent wave velocity and attenuatiosions and emulsions. Our aim in the current work is twofold:
coefficient are evaluated through self-consistent expressiorfgst to develop a single theoretical model that predicts well
most of which are based on scattering parameters taken fromave dispersion and attenuation for all types of suspensions
the solution of the single scattering problem where the mi-and second to provide an iterative computational scheme that
crostructure of the composite medium is immersed into arfor the case of spherical particles is simple and easily imple-
infinitely extended effective medium. The self-consistent ormented. The present new version of IEMA combines the
effective medium theories appear in the literature with dif-self-consistent model of Kinet al*” with the quasicrystal-
ferent versions and procedures depending on the type of suae approximation of Waterman and TruglConsidering the
pensions they applied. Thus, for particulate composites oneffective material properties of the composite medium being
can mention the self-consistent models of Talbot andhe same with the static elastic ones proposed by
Willis, 3! Sabina and Willi# and Devaney’ the effective  Christensen® properly modified for liquid mixtures, and sat-
medium approximations of Ke¥t and Kanauret al,*® the  isfying the single scattering self-consistent condition of Tsi-
dynamic self-consistent effective medium approximations ohopouloset al.*® the effective and frequency dependent dy-
Berryman® Kim et al®” and Tsinopouloset al® and the namic density of the nonhomogeneous medium is evaluated.
incremental self-consistent approach of Anson and Chivers The complex value of the effective density in conjunction
and Biwaet al>® For liquid suspensions, one can mentionwith the static effective stiffness of the composite medium
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determine both the velocity and the attenuation of an ultra- ® ®
sonic pulse propagating in the random particulate suspen- | Effective medium k¥, u7, o7 Effective medium K%, s, o7
sion. The single scattering problem is solved using the Ying
and Truelf? formulation, which with minor modification can Incident wave Incident wave
accommodate solution of scattering problems dealing with

inclusions suspended in liquid matrix. Several numerical re-
sults compared with experimental data taken from the litera- Problem 1 Problem?2

ture demonstrate the IEMA efficiency on predicting wave

dispersion and attenuation in all types of particle suspenFIG. 1. A plane mean wave propagating in the effective medium and scat-
sions. tered by(a) a matrix inclusion(problem 1 and (b) a particle inclusion
(problem 2.

According to the IEMA the self-consistent conditi¢8)
is satisfied numerically through an iterative procedure, which
In this section, the IEMA proposed recently by Tsinopo-can be summarized as follows.
uloset al® and modified for the needs of the present workis ~ Consider a harmonic elastic plane wave with circular
presented. frequency w, either longitudinal(P) or transverseSH or
The starting point of the IEMA is a self-consistent con- SV), traveling through the composite. Due to the presence of
dition first considered in the coherent potential theory ofthe particles, multiple scattering occurs and thereby the con-
Soven?® According to this theory, any wave propagating in a sidered wave becomes both dispersive and attenuated and its
composite medium can be considered as a sum of a meaomplex wavenumbekS'(w) can be written as
wave propagating in a medium having the dynamic effective
properties of the composite and a number of fluctuating kg“(w):
waves coming from the multiple scattering of the mean wave
by the uniformly and randomly distributed material varia-
tions from these of the effective medium. On the average, th
fluctuating field should be vanished at any direction within
the effective medium, i.e.,

II. THE IEMA FOR PARTICLE SUSPENSIONS

Y e 4
C_SH(T) lag (o), 4

ith C&(w) andaM(w) being the frequency dependent wave

phase velocity and attenuation coefficient, respectively. The
subscriptd denotes either longitudinab& p) or transverse
(d=s) wave.

(k-T-ky=0, (1) Next, the composite material is replaced by an elastic

homogeneous and isotropic medium with effective Lame’

where() denotes the average over the composition and theonstants x°, \° given by the static model of
shape of the scatterer3, is a matrix corresponding to the Christenser?
total multiple scattering operator for the fluctuating waves

andk is the propagation direction of the mean wave. Equa- Ni(A1—Ao)| Ao+ fﬂz)
tion (1) is well known as self-consistent condition and can be A=\, + 3
used to determine the dynamic effective properties of the 4 '
composite material. However, due to the prohibitive compu- N2(A1=A2) | Aot §'““2)
tational cost of the evaluation of the operaioSovert® pro- off1 2 off (5)
posed, instead of Eq@1), the use of the following simplified A(:“_) 128 » Lc=o.
self-consistent condition: Mo Mo
(k-t-k)=0, (2)  Subscripts 1 and 2 indicate particle and matrix material prop-

erties, respectively, and\, B and C are functions of
with T being a single scattering operator coming from the(u1,u»,n;) given in the paper of ChristenséhSince the
diffraction of the mean wave by each composition, i.e. maLame’ constani is usually referred to an elastic medium, in
trix and particles, embedded in an infinitely extended effecthe present work where liquid suspensions and emulsions are
tive medium. Devaney proved that Eq(2) could also be considered the bulk modulus®™=x\®"+(2/3)gm®" is used
written as a function of the far field scattering amplitudes ininstead.
the forward direction. Thus, for identical homogeneous par-  For the cases of a liquid matrix, the shear modujef,
ticles embedded in a homogeneous elastic or liquid matrixinstead of being calculated throu@®), is set to a very small

Eq. (2) assumes the following form: value, since, even for high concentrations, the inclusions do
L . not form an interconnected network that would effectively
ngM(k,k)+(1-nyg®(k,k)=0, (3)  reinforce the shear rigidity of the mixture. In the present

. . r the shear modulus for all th nsidered liquid ph
wheren; represents the volume fraction of the particles an(ﬁape the shear modulus for all the considered liquid phases

(DL L 200 L ) ) as been taken equal to 100 Pa.
g"7(k,k), g"7(k,k) are the forward scattering amplitudes In the first step of the IEMA, the effective density of the
taken by the solution of the two single wave scattering prOb'composite is assumed to be
lems illustrated in Fig. 1. The solution of the single scattering

problem is described in the next section. (peﬁ)steplznlpl+(l—nl)p2. (6)
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Then, the effective wave numbekg{f)stepl is evaluated as
straightforward through the relations
2 | Effective medium density: (o), = n, ™ + (I-n,) p""'l

| Static physical properties of effective medium: A7, 47 |

(keﬁ) '3Keff+ 4Meﬁ -1 (7) >
=w ,
p /stepl | 3(peﬁ) stepl Ying - Truell

d ¥ ¥
for a P-wave an | Problem (1): £°(c, k)| | Problem (2): ¢”(k k)|

[ eff - 1/2 1
i CTp) —2—
(ke stepi= @ _eff_J : ®) [ 0=, 0+ 1 -my 270 o o TRUE| 7 ©)" Ry
L(P™)step [FALSE )-In(k? 6)]

for a shear wave, respectively.
In the sequel, utilizing the material properties obtained
from the first step, the two single wave scattering problems 4|New value for density: (o%), |
illustrated in Fig. 1 are solved. The solution of these prob-
lems is accomplished analytically from the matrix notation FIG. 2. A schematic representation of IEMA.
of the Ying and Truell formulation, as will be explained in
Sec. lll. Combining the evaluated forward scattering ampli-propagation and fluid flow in porous media and that employ
tudesg{?(k,k), according to the self-consistent condition complex densities in their frequency domain analysis. Usu-

T =167 Yo F+ong.cke’ +9n.2@,,Z(k,k)—gf(k,—k))/(4k*a‘*

(), i.e., ally, the imaginary and real part of a complex density come
. oo from the frequency domain transformation of first and sec-
ga(k.k)=n;g{P(k,k) +(1-nygP(k k), (9 ond order time derivatives, respectively, involved in the dif-

ferential operator of the problem. Thus, beyond the different
type of explanations being available in the literature, the real
and imaginary part of a complex density are directly related
to the kinetic and the absorbing energy of the medium, re-

and making use of the dispersion relation proposed by Wa;
terman and Trueff,one obtains the new effective wave num-
ber of the mean wave,

, . 3n,94(k,k) spectively. This could explain why in the proposed here it-
[(kg)stepal*=[ (K3 )step:l]2+ — 3 erative methodology the complex density is responsible for
the final evaluation of the frequency dependent velocity and

gni(gg(ﬁ,ﬁ)—gg(k,—ﬁ)) attenuation coefficient of the particulate composite medium.

2K2aE : (10) It should be also mentioned that an alternative IEMA

procedure would be the consideration of a constant density

wherea is the radius of the smallest sphere including the[Eq. (6)] for all the steps and the use of either the complex
particle. values of the bulk modulus evaluated from E@) when

The new complex wave numbek{')sep, Of the mean  ongitudinal waves propagate through the composite me-
wave propagating through the composite medium is the dedium, or the complex shear modulus obtained from .
parture point of the second step. Keeping the same statighen shear waves are considered. However, although the
material properties5) for the effective medium and utilizing two procedures seem to be equivalent, the use of the com-
relations (7) and (8) for longitudinal and transverse inci- plex modulus instead of the complex density leads to disper-
dence, respectively, one calculates the new effective densifon and attenuation predictions that in many cases are in
of the host medium g, Which due to k§Msepais NOW  poor agreement with experimental observations. On the con-
complex Considering the new material properties.uer  trary and as it is evident in the sections after next, the use of
and (p®M)gepz the two single wave scattering problems de-the complex density in the IEMA procedure provides results
picted in Fig.1 are solved again and the procedure is repeatésking in a very good and sometimes in excellent agreement
until the self-consistent conditiof8) is satisfied. This means with the available experimental data.
that (k§ )ste,m 1= (kd )stepy) - Finally, the evaluatedi
conjunction with Eq. 4 determines the frequency dependen
effective velocity C§ (a)) and the attenuation coefficient hl FORMULATION AND SOLUTION OF THE SINGLE

SCATTERING PROBLEM
(w) of the propagating wave. The whole procedure is

summanzed in the flow chart of Fig. 2. In this section the formulation and solution of the single

In the just described procedure, a point that needs furscattering problem is briefly described. The present approach
ther discussion is the use of the complex density throughous based on the Ying and Truell formulatfénconsidering
the iterations of the IEMA. From a physical point of view, scattering of a plane wave on an elastic sphere embedded in
one can say that the choice of using the density as the ma@n infinite elastic matrix. The subject of scattering on a
parameter controlling the material properties of a particlespherical obstacle has been discussed extensively in litera-
suspension seems to be realistic, since both dispersion amgre so only general guidelines will be presented here.
attenuation are dynamic properties of the considered com- When a compressional wave impinges on the patrticle it
posite medium. On the other hand the idea of a complexgives rise to both compressional and shear waves inside the
density is not something new in the literature. As a represenparticle, as well as the scattered compressional and shear
tative example one can mention the works of Petculescu andaves outside the particle. Expressions for each of these
Wilen** Leeet al>® and Pan and Horrédealing with sound  waves are equated using the boundary conditions at the sur-
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face of the particle, yielding four equations with four un- 2645 @ 1537
known scattering coefficient\,, B,, C, andD,,. In the ? ®
present formulation temperature and heat transfer effects ar
not included. The equations, concerning namely the continu-ﬁ
ity of the normal and tangential velocity component as well € 2640 1536
as the continuity of the normal and tangential stress compo-—‘g? &
nent are as follows: g E
0 F-
. 2 S
Ankiah, 1(k @) +Bpnkiahy, 1(x18) = Ckod iy 1(Kod) 3 g
) E 2635 1535
B Dnﬂ K28 m-+ 1( kza) _g': Lead/Epoxy Polystyrene in saline
1 volume fraction=5.4% volume fraction=3%
=(—i)"}2n+ 1) i [kidmea(ked)], (11) kia=3 ka=12.68
1 2630 1534
0 2 4 6 8 10 12 0 3 6 9 12 15 18 21
Anhn(kla)—Bn[(nJr1)hn(;<la)— Klahn+1(K1a)] Truncation order n Truncation order n
—C.i (ko) +D.[(N+1)i a) — k-ai a FIG. 3. (a) Velocity vs ordern for 5.2% by volume composite of 660m
nlm(K ) n[( )]n(KZ ) 2 Jn+1(K2 )] radius lead spheres in epox§p) Velocity vs ordern for 3% by volume
. 1 suspension of 152m radius polystyrene spheres in water.
=(—i)""*(2n+ D, Im(ked), (12
lab routine using standard inversion command. Therefore,
Al (k18)2%h, (k@) — 2(n+ 2)kgah, 1 (k@) ] the forward scattering amplitudey, can be calculated
) through
+Bnn[ (k1) “hy (k1) —2(N+2) ky8hp 4 1( k1) ] .
. . 1
— Cp[ (k28 %) n(kp8) = 2(N+2)k,a) 1 1(kp8) ] 0(0)= . 20 (2n+1)A,,
1n=

—DnpN[(k23)%] n( k23) = 2(N+2) k28] n+1( K23 ]

(15

1 oo
=— - (2n+1)A,.
— ()" 20+ ) (i@ (ki) - 2(n+2) 9m =i & (D@ DA,
1

The appropriate order of has been shown by O'Neiit al *°

XK@ m1(ki@) ], (13)  to be roughly equal to the dimensionless wavenumbg,
meaning that for higher frequency bands as the particle ra-
An[ (= 1)Nn(k18) — ks8N 1(k18)] dius rises significantly compared to the wavelength, and in
K2 order to have a reliable calculation of the scattering ampli-
-B, (nz— 1- T) h, (k18— k1@, 1 1(k1@) tude and therefore velocity and attenuation, more scattering
terms must be summed in EA5).

—Capl(n—1)jn(koa) —Kaan+1(koa) ] Indeed, this is evident throughout the present work as
can be seen in Fig. 3. There, two indicative examples con-
cerning the order oh, necessary for the convergence of
velocity via the Waterman and Truell dispersion relation are
1 depicted. In Fig. 8) where a case of a lead/epoxy particu-
=(=)"Y2n+1) —[(N—1)] (k&) — K@ s 1 (Ke@)], late composite is considered, it is seen that for frequency 1.9
ky MHz corresponding tk;a= 3, for particle radius 66Qum,
(14)  the velocity obtains a constant value after aboet6. In Fig.

3(b) the medium is a polystyrene in the saline suspension
wherek; andk, are the longitudinal wavenumbers in the and the appropriate number offor convergence is 16 while
matrix and inclusion, respectively; and x, are the shear thek,a equals 12.Fradius 152um and frequency 20 MHz
wavenumbers in the matrix and inclusion, respectively, |t is seen that generally velocity and attenuation converges
= p2/pq, ais the particle radius, ang, and h, are the  for order k;a+3 while thereafter no detectable change is
spherical Bessel and Hankel functions. mentioned. Therefora was set equal to the integer kfa

In case the modeling concerns a problem of scattering- 7 for the needs of the present studly.
on particles suspended in liquid, the equations can be derived
by a limiting process £, 0).*°As it is already mentioned |/ o-c TS AND DISCUSSION
in the present work the shear modulus for any liquid phase
was taken to be 100 Pa. In this section the prediction capability of the IEMA is

In order to calculate velocity and attenuation for a givenexamined. Although it has been proven to yield accurate re-
frequency the equations must be solved for the scatteringults for particulate composit&sfor volume concentrations
coefficients for each value of n. In the case of the scattereds high as 50%, herein the efficiency of IEMA is addressed
longitudinal wave, theA, coefficients are of interest. This also for liquid matrix systems. Calculations are carried out
system of equations, in matrix notation, is solved by a Mat-for several cases of systems for which experimental data are

+D,p

, . KA .
n _1_7 In(K28) = k28] n11(K20)
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TABLE |. Material properties.

Cp Cs N ) p

Material (m/9) (m/s) (Gpa (Gpa (Kg/m?®) Fig.

Iron 5941 3251 110.99 82.86 7840 (at

PMMA 2669 1305 4.37 2.00 1175

TiC 10000 6200 113.28 188.36 4900 (bst

Epoxy 2523 976 5.58 1.19 1250

Lead 2210 860 38.48 8.36 11300 5

Epoxy (8282 2640 1200 4.92 1.73 1202

Al7091 6305 3066 59.5 26.7 2840 6

SiCp 12210 7707 100.0 196.0 3300

Glass 5280 3240 17.15 26.16 2492 7

Epoxy (3012 2541 1161 4.44 1.59 1180

Polystyrene 2337 1098 3.21 1.27 1053 &§)910

Water 1500 — 2.250 - 1000 8(19, 10, 12,
13, 14b)

Glass 6790 4167 27.36 41.76 2405 (29

ATB 1026 — 2.49 - 2365

Glass 5600 3400 20.6 28.9 2500 11

Glycerol-water 1840 — 4.063 1200 11

mixture

Xylene 1320 — 1.513 - 868.2 12

Bromoform 900 — 2.341 - 2890 (]

Benzene 1320 — 1.5263 - 876 (bR 14(a)

Water/glycerine 1711 — 3.232 - 1104 (Bn

Carbon 968 — 1.536 - 1640 1b)

tetrachloride

available in the literature. The material properties of the conk;a=0.02. It is obvious that the agreement for almost all
stituent phases are summarized in Table | along with theolume fractions between experimental velotitgnd IEMA
corresponding figure number where experimental and thegredictions is very good. In this figure, the predictions made
retical curves are depicted. Although water and polystyrendy the Waterman and Truell approach, without applying the
takes part in more than one measurement, the properties derative procedure, are also supplied. It is seen that the
not exhibit remarkable differences from one case to otheragreement is good but for high volume fractions the use of
therefore they are mentioned once. the self-consistent relation seems to more closely follow the
trend at higher volume fractions.

The next case under consideration is a lead/egB&ppn

The first material studied is an Iron/PMMA composite. 8282 composite with spherical particles of radius 66
In Fig. 4@ comparison between measured and calculatednd volume fractions 26% and 52%; see Figs) and 5b),
longitudinal velocity is depicted for a monochromatic waverespectively. The theoretical results are compared again to
(k;a=0.06). The experimental data are obtained by thehose taken directly from the Waterman—Truell dispersion
work of Piche and Hamel’ As observed the agreement is relation. Although the discrepancy between IEMA results
excellent while the Waterman—Truell model, as expectedand experiment(taken from the work of Kinra and
predicts well only for low concentrations. Roussealf) seems to increase with volume content, it can be

The other case, Fig.(8), concerns a titanium carbonate said that, qualitatively, the results are in good agreement. An
(TiC) in epoxy composite at the dimensionless frequency

A. Particulate composites

2800 3200 ;
= @ [EMA i/
2 2700 ¢  Experimel @ i / —~
£ ===+ Waterman & Truell & _‘:_‘_ mm::ileell ‘_i' hd g
% 2600 2 3000 i =
g a=0.06 3 k=002 | £
2 2500 s / 8
° ° 2
§ 2400 § 2800 §
g 20 3 :
2 ' 5 2600 T !
£ 2200 '\ . 2 )
£ % 2 £ 1400 ] IEMA
4 2100 AN S - 5 N e Experimental

* = 12000 0 [emee Waterman & Truell
2000 - 2400
0 10 20 30 40 50 0 10 20 30 40 50 60 1000
Volume fraction (%) Volume fraction (%) 0 400 800 1200 1600 O 400 800 1200 1600
Frequency (kHz) Frequency (kHz)

FIG. 4. Acomparison between predicted and measured longitudinal velocity

for (a) an iron/PMMA compositédexperimental data from Ref. 52nd (b) FIG. 5. A comparison between predicted and meas(Red. 58 longitudi-

for a titanium carbonate in epoxy composigxperimental data from Ref. nal velocity for a 660um radius lead spheres in an epoxy composite with
11). volume fraction(a) 26% and(b) 52%.
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o 1w @/ 1400 ()
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FIG. 6. A comparison between predicted and meas(Red. 13 longitudi-

nal velocity for a SiCp in aluminum composite, matrix type 7091. FIG. 8. A comparison between the predicted and measiiRetl 16 sound

velocity of a suspension of 1% polystyrene spheres in water with radius
50 um and(c) 70 um and corresponding attenuati@ip) and (d).

important conclusion drawn by this figure is that the IEMA _ )
predicts the shift of the lowest and highest resonance frelested, while the Waterman and Truell approach seems suit-
quencies to higher values as the volume fraction increase&ble only for low frequencies.

The position of the resonant frequencies can be found in the

diagrams of Fig. 5 since at these frequencies the velocitg. Elastic—liquid suspensions

obtains maximum values.

Figure 6 depicts the longitudinal wave velocity of alu-
minum (Al) matrix composites containing silicon carbide
(SICp) particles. The increase of velocity with volume frac- °~,
tion is apparent for both cases and predicted values are qui{é'ned va!ues Very sme_ulllOQ Pa. .
close to the experimental ones concerning the random orien- 1 n€ first case studied is a 1% by volume polystyrene in

tation of the particles. After microstructural characterizationwater_ suspe”r?_o n hW']Eh partlcleb5|z§ 35&;8 I\l/ln;er{)ogated
of the material:® the average SiCp size varied approximatelyexperlmenta in the frequency band 3- Z by means

from 2 to 4 um. For the theoretical predictions the diametermc ultrasonic spectroscopy. Overall, the predicted shape of
was considered to be @m the phase velocity and attenuation curves tracks the experi-

The last particulate composite case concerns the attenfP€Nt! results closely as seen in Figia)&nd 8b), respec-

ation of the glass/epox§Tra-cast 301Psystem. The attenu- UVelY: The peaks and nadirs of the IEMA model coincide
ation measurements carried out by Kireal®! for a 45% with the experimentally measured ones for both velocity and

volume content of glass and the corresponding predictions Attenuation being closer than the original Waterman and Tru-

IEMA are presented in Fig. 7. It is apparent that the IEMAeII dispersion relation.

follows closely the experimental data for the frequency rang?ocitsl?‘tglea:scsaisr? ;)cf:(;?;leerr?(ittltijr'sati)nroizrﬁ((j?t; ZiiAége) Yse

Liquid suspension modeling does not require a much
different approach. As mentioned above, since liquids do not
support shear waves, the shear modulus of the matrix ob-
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FIG. 12. A comparison between the predicted and meag&ef 18 sound
FIG. 10. A comparison between the predicted and meagiet 15 sound velocity of water in a xylene emulsion.
velocity of a 308 nm polystyrene spheres in water suspension for different

[ tents. . . - .
volume contents large mismatctithe sound velocity of fluid is 1840 m/s while

_ _ of glass beads 5600 m/eesulting in strongly scattering be-
depicted vs the volume content. The frequency applied exhavior. IEMA succeeds in predicting very well the experi-
perimentally is 5 MHz while the particle radius is 124,  mental behavid? up to about 5 MHz tested for the cases of

resulting ink;a=0.3829. The experimental data is due t034% and 45% volume content of glass as seen in Figs) 11
McClements and Povéy and they are in excellent agree- and 11b), respectively.

ment with IEMA predictions.

In Fig. 9b) another case of polystyrene in water is ex-
amined concerning the effect of the volume fraction in ve-C. Liquid—liquid emulsions
locity at 2 MHz. In such systems, due to the low-density
contrast between the two phases thermal effects are expectgg
to be dominant® However, although the present formulation b
omits such effects, theoretical predictions are very close t
experimental dat&

Apart from the suspension of elastic particles in fluid, a
arate category can be assumed for the liquid—liquid emul-
sions. Ultrasonic parameters of such systems as velocity and
Qttenuation can also here be very closely predicted uging

L . =100 Pa for both liquids and following the same iterative
The same work of Holmest all® contains interesting qu wing erativ

mparisons between the dispersive behavior of differ nE)rocedure. All experimental data concerning this section are
comparisons betwee € dispersive behavior: 0 ereMaken again from McClements and Pov8y.

particle volume fraction suspensions sharing though the In Fig. 12 a water in xylene emulsion is described with

same particle size. In Fig. 10 the experimentally observe% ;
. : . i . roplet size 5um, measured at the frequency of 5 MHz for a
dispersion of 20.6% and 45.5% with a particle size of 308Wide range of volume fractions. In the next Fig. 13 two cases

nm between 2 and 50 MHz is depicted. It is apparent thabf water based emulsions are presented. In Figa)lthe

both the IEMA and the Waterman—Truell model predict We”dispersed phase is bromoform and in Figt3 is benzene

for the present case. . - . The droplet size is 3um for the first case and gm for the

The last case of elastic in a liquid suspension presentegecond while the frequencies used are 3 and 2 MHz, respec-
herein concerns a suspension of monodispéagdius 0.438 . : . s

. . . tively. As can be seen, the increase of the dispersed liquid

mm) glass beads in a 75% glycerin—25% water mixture. The y P q

properties of the suspended and continuum media exhibit
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FIG. 11. A comparison between the predicted and meag&efd 42 sound
velocity of a glass beads in glycerol-water mixture suspension for volume=1G. 13. A comparison between the predicted and meagi®ef 18 sound
fraction (a) 34% and(b) 45%. velocity of (a) bromoform in water andb) benzene in water emulsion.
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