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In this paper, the propagation of stress waves in a strongly hetero-
geneous medium is examined numerically. Low-density inclusions are
used to model cracks in a stiff matrix. The volume content of inclusions
affects, to a great extent, the shape and the velocity of the propagating
wave. Additionally, the pattern and orientation of the simulated cracks
relative to the propagation direction influences the individual wave
modes (longitudinal and Rayleigh) in different ways. The aim of this
study is to shed light on surface-wave propagation in damaged
cementitious materials to establish new features similar to or more
sensitive than longitudinal velocity for damage characterization.

Keywords: damage assessment; longitudinal wave; nondestructive testing;
simulation; surface wave; velocity.

INTRODUCTION
Stress-wave propagation methods are commonly used for

damage characterization in concrete. In some cases, when
specific macroscopic defects are targeted (for example,
delaminations, ungrouted tendon ducts, and surface breaking
cracks), methods based on stress waves provide accurate
information for characterizing the defect. In other cases,
however, when there is distributed cracking, results are only
qualitative due to inherent difficulties resulting from material
inhomogeneity and attenuation.1 Reliable characterizations
rely on an understanding of wave propagation in inhomogeneous
media. Therefore, combined studies involving experiments
and numerical simulations are essential. In recent experimental
studies, wave propagation parameters such as velocity and
attenuation have been correlated with the typical shape and
content of cracks.2-6 Theoretical solutions by multiple scattering
theory yield satisfactory explanations when spherical
inhomogeneities are assumed.5,7-9 However, the shapes of
inhomogeneities influence wave propagation parameters,
such as velocity and attenuation, and should be taken into
account.10 The effect of the actual shapes of cracks has not
been adequately theoretically addressed, especially for the
case of surface waves in a medium with random patterns of
inhomogeneities. In literature, numerical simulations have
been conducted for different cases of wave propagation in
concrete, for example, for acoustic emission signals propagating
through tendon ducts or surface waves influenced by reinforcing
bars.11,12 The benefit of simulations is that they enhance our
understanding of wave propagation in the sense of what
behavior should be expected for different conditions.
Additionally, many different cases can be studied more
efficiently than by experimental methods.13

Previous studies by the author2-4 involved mortar with
small vinyl plate inclusions (15 x 15 x 0.2 mm [0.59 x 0.59 x
0.008 in.]) simulating microcracks at different concentrations,
that is, 0, 1, 5, and 10% by volume. In these studies,2-4 the
water-cement ratio (w/c) and sand-cement ratio by mass
were 0.5 and 2, respectively; and the maximum aggregate size

was 3 mm (0.12 in.) (too small compared with the vinyl
inclusions). The vinyl inclusions were added after the other
ingredients were mixed. The mortar with the vinyl inclusions
was mixed for another 2 minutes and was then placed in the
forms. The specimens (cubes of 150 mm [5.9 in.] side) were
cured in water for 28 days and measurements of longitudinal
and Rayleigh wave velocities were conducted after several days
of air drying. It was found that Rayleigh waves are influenced
much more by inhomogeneities—in terms of velocity and
dispersion—than longitudinal waves.3 Additionally, the exper-
imental variability of different measurements on the same
specimen was close to zero for sound mortar but was raised to
approximately 20% for high “cracking” content, implying a
strong influence of localized heterogeneity. Although the total
number of inclusions makes up a specific volume content of the
whole specimen, it is possible that the specific volume examined
between two sensors contains fewer or more inclusions.
Therefore, one measurement might not be representative. This
is why a large number of measurements on several specimens
should be done and their statistical scatter examined.

The aforementioned outcomes deserve detailed numerical
studies because the classical elastic approach usually
employed for cementitious materials cannot provide reasonable
answers concerning the different influences of cracking on
the various wave modes and the dependence of experimental
scatter on crack density. Additionally, the actual shape of
cracks cannot be addressed by “effective medium”
approaches like multiple scattering theories7,14 because
analytical solutions exist only for spherical scatterers. The
purpose of this paper is to present the results of numerical
simulations for comparison with recent experimental surface
wave studies in mortar with artificial cracks3,4 to propose
new sensitive parameters for material characterization.

RESEARCH SIGNIFICANCE
New methods are highly sought for nondestructive testing

of large concrete surfaces. Using the same equipment as for
pulse velocity measurements, other wave propagation
parameters can be exploited that are more sensitive to
damage, as discussed herein. The combined study of exper-
imental and numerical results offers a better understanding of
the mechanics of wave propagation through a damaged
medium. Modeling the actual shape of cracks yields more
realistic conclusions than the previously used spherical inclu-
sions. Rayleigh wave velocity, the ratio of Rayleigh to longitu-
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dinal velocity, and the experimental scatter of the measurements
are affected by the amount and orientation of cracks.

NUMERICAL MODEL
The fundamental equation governing the two-dimensional

(2D) propagation of stress waves in a perfectly elastic
medium, ignoring viscous losses is as follows

(1)

where u = u(x,y,t) is the time-varying displacement vector; ρ
is the mass density; λ and μ are the first and second Lamé
constants, respectively; and t is time. The focus is on simulating
the same cases examined experimentally. Certain prerequisites
should be followed, however, so that the analysis leads to
reliable results. The simulations were conducted with
commercially available software15 that solves the previous
equation using the finite difference method in the plane
strain case. Equation (1) is solved with respect to the
boundary conditions of the model, which include the input
source that has predefined time-dependent displacements at
a given location and a set of initial conditions.16 For
heterogeneous media like the one studied herein, wave
propagation in each distinct homogeneous phase (in this

ρ
∂

2u

∂t2
-------- μ∇

2u λ μ+( )∇∇ u⋅+=

case, mortar matrix and inclusions) is solved according to
Eq. (1), whereas the continuity conditions for stresses and
strains must be satisfied on the interfaces.16

Materials were considered elastic without viscosity
components. Mechanical properties were set similar to the
experimental material properties.2 The numerical model
included the mortar matrix with Lamé constants λ = 9 GPa
(1305 ksi) and μ = 13 GPa (1885 ksi) and a density of
2160 kg/m3 (135 lb/ft3). The corresponding properties of the
inclusions were λ = 1.7 GPa (247 ksi) and μ = 1.15 GPa (167 ksi)
and a density of 1200 kg/m3 (75 lb/ft3). These properties, as
well as elastic moduli E, Poisson’s ratio ν, longitudinal CP,
and Rayleigh wave velocities CR, are included in Table 1. The low
mechanical properties of the inclusions guaranteed a strong
impedance mismatch and, therefore, strong scattering interactions.

The excitation used experimentally (pencil lead break)3,4

contained a band of frequencies up to 200 kHz, with a center
frequency at approximately 100 kHz. Therefore, the simulations
were conducted using a displacement excitation of one cycle
of 100 kHz, which contained a broad band of frequencies of
approximately 100 kHz. Two “receivers” were placed on the
surface of the specimen 20 and 60 mm (0.787 and 2.36 in.)
away from the source, as shown in Fig. 1(a). The receivers
provided the average vertical displacement over their length,
meaning that the receiver signal represents the average
response over a number of nodes. Considering the mesh resolution
of 0.1 mm (0.004 in.) and a receiver surface of 15 mm (0.59 in.),
the transient response recorded at each step is the average
displacement of 150 surface nodes. The snapshot of Fig. 1(a)
shows the longitudinal and shear wavefronts spreading away
from the point source, as well as the Rayleigh wave between
the two receivers for material without the inclusions. It is
noted that all of the results come from the vertical motion of
the surface. The R-wave certainly has a vertical motion
component, which is much stronger than the horizontal;
therefore, it can be easily captured by the receiver on the
surface. On the other hand, the L-wave has only a horizontal
component. It can still be detected by the receiver, however,
due to Poisson’s ratio of the material, which induces a vertical
displacement over the transient stress field.

Except for the case of solid mortar, three inclusion
contents were used in the numerical models 1, 5, and 10% of
the total area of the cross section. The shape of the inclusions
was 15 x 0.2 mm (0.59 x 0.008 in.) for the 2D model while,
as stated, the experimental inclusions were plates of 15 x 15 x
0.2 mm (0.59 x 0.59 x 0.008 in.).2,3 For a fixed content and
shape of the inclusions, there are infinite possible combinations
of orientations and local concentration variations. Therefore,
any specific pattern used for simulation will be one of a vast
number of possible cases. In this study, several predefined
arrangements of inclusions were used (for example, cases
with all inclusions horizontal, cases with all inclusions
vertical, or all inclined inclusions at a certain angle). In this
way, it is possible to draw conclusions about how the orientation
of the simulated cracks influences wave propagation. For
each inclusion content, 12 patterns of orientations and local
concentrations of inclusions were examined, as shown in
Table 2. The patterns included: horizontal (parallel to the
surface and the surface wave propagation direction), as seen
in Fig. 1(b); vertical; inclined by ±30, ±45, and ±60 degrees
(Fig. 1(c)); combinations of horizontal and vertical; and
bunches of horizontal and vertical inclusions (Fig. 1(d)). The
simulations were repeated after moving the positions of
excitation and the receivers by 10 mm (0.394 in.) two times,
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Table 1—Properties of materials used in 
numerical model

λ, GPa
(ksi)

μ, GPa
(ksi)

E, GPa
(ksi) ν

ρ, kg/m3

(lb/ft3)
CP, m/s

(ft/s)
CR, m/s

(ft/s) CR/CP

Mortar 
matrix

9.0
(1305)

13.0
(1885)

31.3
(4496) 0.20 2160

(135)
4025

(13,205)
2239

(7346) 0.556

Inclusions 1.7
(247)

1.15
(167)

3.0
(435) 0.30 1200

(75)
1826

(5991)
908

(2979) 0.497

Effective* 7.77
(1127)

11.01
(1597)

26.6
(3858) 0.207 2064

(129)
3800

(12,467)
2108

(6916) 0.555

*Properties as calculated by Christensen model19 for 10% volume of inclusions in matrix.

Fig. 1—Geometry of numerical model and snapshot of
displacement field 15 µs after excitation for: (a) plain mortar
and mortar with vinyl inclusions of different patterns; (b)
horizontal; (c) inclined by 60 degrees; and (d) vertical
bunches. Total content of inclusions is 5% for (b), (c), and (d).
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so that three waveforms were recorded for each inclusion
pattern. Even if the total concentration of inclusions is
constant, moving the excitation and receivers’ positions
resulted in different velocities. This was done to include the
effect of sensor position relative to the underlying inho-
mogeneity and determine if the experimental variation
observed in previous studies3,4 was due to experimental
uncertainties (for example, coupling conditions) or if it was
due to the material inhomogeneity itself.

The model geometry was 150 x 50 mm (5.90 x 1.96 in.) and
an infinite boundary condition was used at the bottom to avoid
reflections. The element size (mesh) was 0.1 mm (0.004 in.).
For a frequency of 100 kHz, the Rayleigh wavelength is
calculated to be approximately 25 mm (0.98 in.) and the
longitudinal wavelength approximately 40 mm (1.57 in.).
This satisfies the requirement15 of at least 10 to 20 nodes per
wavelength and results in reasonable accuracy.17 Figure 2(a)
shows the waveforms at the two receiver positions for the case
of plain mortar for a mesh size of 0.1 mm (0.004 in.). Figure
2(b) shows the transient waveforms obtained for a material
with 10% vertical bunches of inclusions using the same mesh
size and also a coarser mesh of 0.2 mm (0.008 in.). It is
apparent that the waveforms are identical, and the longitudinal
and Rayleigh wave velocities measured using the strong
positive peaks were exactly the same for the two mesh sizes.
This shows that the results converge even for a mesh size of
0.2 mm (0.008 in.), while in this study, a 0.1 mm (0.004 in.)
mesh size was used. The time step was 0.01975 μs, meaning
that for a frequency of 100 kHz (a period of 10 μs), more than
500 points were used in a cycle, ensuring adequate depiction.

SIMULATION RESULTS
The longitudinal wave velocity is measured by the transit

time (δtL) of the first detectable disturbance of the wave
between the receivers. The Rayleigh surface wave, on the other
hand, carries most of the energy; therefore, its arrival is usually
clear after the initial longitudinal wave arrivals. The reference
point used for Rayleigh velocity calculation is taken as the first
large peak of the Rayleigh wave signal.3,4 The distance between
the receivers divided by the delay time δtR (refer to Fig. 2) of the
reference points yields the Rayleigh wave velocity.

Figure 3(a) shows the relation between wave velocity and
inclusion content. For plain material, the longitudinal wave
velocity is 4025 m/s (13,205 ft/s) as defined by the mechanical
properties of the matrix used in the model. As the inclusion
content increases up to 10%, the velocity decreases smoothly
to 3370 m/s (11,050 ft/s) and is quite close to the experimental
value.3 For the Rayleigh wave velocity, it starts at 2240 m/s
(7350 ft/s) for the plain material and is reduced to 1450 m/s
(4750 ft/s) for the model with 10% inclusions, also closely
following the experimental trend. The numerical results
represent the average velocities of all of the different orientations
of inclusions used in the models to simulate as closely as
possible the actual experimental case where the orientation
of the inclusions is considered random.2,18

By using different established models for the calculation of
properties of composites based on the properties of the
constituents19,20 for 10% volume content of inclusions, the
longitudinal velocity of the effective medium should be
approximately 3800 m/s (12470 ft/s, Table 1). These models,
however, only consider the volume content of the inclusions.
The experimental and numerical results produced by using
inclusions with a realistic crack shape show that velocity

Table 2—Different patterns of inclusions used 
in simulation

Fig. 2—Transient waveforms of two receivers for: (a) plain
material; and (b) material with vertical bunches of inclusions
(10% of total area). Legend includes mesh size used for
simulations.

Fig. 3—(a) Average wave velocity versus inclusion content;
and (b) coefficient of variation of wave velocity versus
inclusion content.

*First line of inclusion is on surface.
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decreases much more, being greatly affected also by the shape
of the inclusions.

Simulations confirm that inhomogeneity affects Rayleigh
waves more than longitudinal waves because for 10% inclusions,
the reduction of Rayleigh wave speed is approximately double
that of the longitudinal wave speed (35% and 16%, respectively).
It is therefore implied that Rayleigh waves, which have displace-
ment vectors in two directions, are more sensitive to the presence
of inhomogeneity than longitudinal waves. The difference in the
behaviors of different wave modes is not peculiar to heteroge-
neous materials,3,4 as will be discussed in another section in more
detail. The different behavior of Rayleigh and longitudinal waves
has also been theoretically studied from the viewpoint of gradient
elastic theories in materials with microstructure.21

As mentioned previously, three waveforms for each of the 12
inclusion patterns were produced after “sliding” the excitation-
receiver array, making a total of 36 different simulated experi-
ments for each inclusion content. The scatter in wave velocities
for this population is also strongly dependent on the inclusion
content. In Fig. 3(b), it is seen that the coefficient of variation
([COV], standard deviation divided by the average of the wave
velocities) increases with the inclusion content. For the
homogeneous plain mortar model, different excitation-receiver
positions do not yield any variation. For just 1% of inclusions,
the COV from the simulations rises to 3 to 4% for both wave
types; at 10% inclusions, the COV reaches 15% and 10% for
longitudinal and Rayleigh wave velocities, respectively. The
experimental data showed a similar increasing trend except that
the variation of Rayleigh wave speed was higher than the longi-
tudinal wave speed for high inclusion content. The COV of 3%
for the plain mortar (refer to Fig. 3(b)) can be attributed to
experimental uncertainties (mainly coupling conditions) as well
as local variations of mortar properties. For 10% of inclusions, the
COV increases up to approximately 20%, showing that one
single measurement could easily be misleading. As for the fact
that the Rayleigh wave velocity exhibits a lower COV than the
longitudinal velocity in the simulations, no explanation can be
given. The use of COV as a damage indicator is quite new and
needs more study, both by experiments and simulations. The
significance lies in the fact that the COV of measured Rayleigh
and longitudinal wave velocities increases monotonically with
cracking and, therefore, can be used as an additional
damage indicator.

RELATION BETWEEN LONGITUDINAL
AND RAYLEIGH WAVE VELOCITIES

For the value of Poisson’s ratio ν of a typical cementitious
material, which is approximately 0.2, the Rayleigh velocity

CR is approximately 55% of the longitudinal velocity CP.22

When the material is deteriorated, its elastic modulus
decreases. This means that both longitudinal and Rayleigh
velocities decrease. Nominally, there is no effect on the ratio
of longitudinal to Rayleigh velocities because the ratio
depends only on Poisson’s ratio ν22

(2)

The experimental results, however, showed that the ratio
of Rayleigh to longitudinal velocities decreased from 0.55
(sound material) to 0.35 (material with 10% of inclusions).3

The decrease is too great to be explained by a change of
Poisson’s ratio due the inclusions. In fact, to yield a ratio
CR/CP equal to 0.35, through Eq. (2), the Poisson’s ratio
should be higher than 0.4, which is not possible for cementitious
material. Table 1 shows the computed Poisson’s ratio for the
effective material with 10% inclusions using the Christensen
model.19 Again, this model does not take into account the
shape of the inclusions; thus, the resulted values are used
just as a rule of thumb for the effective material’s Poisson’s
ratio. The calculated value of 0.207 is nearly identical to the
value of the matrix (0.2). Therefore, the change in the ratio
of the velocities (CR/CP) is not attributed to a sharp increase
in the Poisson’s ratio to 0.4, a value which is excluded both
by experience and composite materials model.

For the numerical simulations, the results for the ratio of
Rayleigh to longitudinal wave velocity, CR/CP, are shown in
Fig. 4. It is seen that for 0% of the inclusions, the ratio is at
the expected level (0.54) defined by the elastic constants of
plain mortar. The addition of the low density inclusions
simulating cracks decreases this ratio, even for a content of
1%; whereas for 10% inclusions, the ratio is decreased to
0.43. This change represents a decrease of more than 20%,
which indicates that this ratio is more sensitive to the presence
of the inclusions than pulse velocity alone. For the experimental
measurements, the decrease was even greater to a ratio of 0.35.

Simulations showed that the ratio CR/CP is strongly
influenced by the orientation of the inclusions. Examination
of the results for individual patterns revealed that when the
inclusions have a horizontal orientation, longitudinal wave
velocity is hardly affected, even for the case of 10% inclusions
measured at 3988 m/s (13,084 ft/s) compared with 4025 m/s
(13,205 ft/s) for plain mortar. The Rayleigh wave velocity
for the same horizontal orientation, however, showed a
decrease to 1296 m/s (4252 ft/s) from 2239 m/s (7346 ft/s)
for the plain mortar. In this case, CR/CP = 0.32. The case of
10% vertical inclusions yielded a lower longitudinal wave
velocity (3620 m/s [11,877 ft/s]) than for horizontal inclusions
but a higher Rayleigh wave velocity (1387 m/s [4551 ft/s])
with CR/CP = 0.38. For other orientations (for example, 60
degrees) this ratio was higher (CR/CP = 0.52). The sensitivity
of CR/CP to the orientation of simulated cracks may be
attributed to the nature of the Rayleigh wave, which contains
a vertical displacement vector that is stronger than the horizontal
vector. From the aforementioned, it is seen that the concentration
of “damage” is not the only parameter that influences wave
propagation, because the crack orientation has a different
effect on the individual wave modes. For nondestructive
testing (NDT) of concrete, the change of velocity due to
different orientations of cracks is crucial because quality
estimation is commonly based solely on measured pulse

CP
1 ν+

0.87 1.12ν+
------------------------------ 2 1 ν–( )

1 2ν–( )
--------------------CR=

Fig. 4—Ratio of Rayleigh to longitudinal wave velocity and
COV versus inclusion content.
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velocity. For a crack orientation that is conducive to propagation
(for example, horizontal in this case), longitudinal wave
velocity is not affected much, which gives a misleading
characterization. However, the same cracks will have a greater
influence on Rayleigh waves; therefore, combined measurements
of different parameters are necessary for correct evaluation.

The statistical scatter of the parameter CR/CP is also
shown in Fig. 4. The COV increases from 0 for plain material
up to 17% for high content of inclusions, which is greater
than the scatter of velocities alone, as shown in Fig. 3(b). 

It should be mentioned that the results presented previously
concern the specific pulse introduced (one cycle of 100 kHz).
It is highly likely that the values of the velocities would be
somehow different for different excitation pulses. However,
this pulse covers the usually applied frequencies in concrete,
which is below 200 kHz.

CONCLUSIONS
The characterization of microcracking in concrete structures

based on stress wave propagation is a complicated task. This is
because a number of parameters (amount of cracking, orientation,
geometric pattern, and characteristic size of cracks) influence
wave propagation behavior. Therefore, a relationship between
a single wave feature and degree of cracking is difficult to
establish. New features are sought that are more sensitive than
pulse velocity but are as easy to measure. These new features
may require that the whole ultrasonic waveform is acquired
(as, for example, the identification of both Rayleigh and longi-
tudinal modes, which cannot be conducted only by a simple
threshold crossing algorithm). Waveform acquisition,
however, is available in most of the contemporary pieces of
equipment enabling the characterization of different modes as
well as the amplitude of the waves. If this is not possible due to
equipment limitations, examining the experimental scatter of a
number of measurements will supply additional information on
the severity of microcracking.

The most important conclusions of this combined experiment
and numerical study are the following:

1. Rayleigh wave velocity is more sensitive to the existence
of the inclusions that were used to simulate cracks, being
reduced by approximately 35%, while longitudinal velocity
decreases by approximately 15% for 10% volume of cracking.

2. The ratio of Rayleigh wave velocity to longitudinal
wave velocity decreases very strongly (more than 20% when
10% volume of inclusions were present) due to the differential
influence of microcracks on different wave modes.

3. The COV of wave velocities is close to zero for
measurements on sound material and monotonically increases
to 20% for 10% inclusions. The use of COV as another
parameter to enhance the rough characterization offered by
pulse velocity should be studied further.

4. Crack orientations that are “invisible” to P-wave
measurements can be detected by Rayleigh waves. 

5. The well-known elasticity relations between propagation
velocities and elastic constants are derived for homogeneous and
isotropic material. Concrete can be considered as such when
undamaged. When numerous cracks are present, however, these
relations do not provide predictions close to the experimental
findings. Models including both distinct phases—like the numer-
ical simulations of this study—seem more appropriate for the
explanation of the behavior of damaged cementitious material.

6. The results of numerical simulations were close to experi-
mental results. Because purely elastic materials were assumed in
the models (neglecting viscous components), it is believed that

elastic scattering is the main reason for the observed behavior.
Simulations offer a valuable tool for studying a variety of cases
that would be difficult or costly to reproduce by experiment. 

Some of the next steps for the numerical simulation will be
to use different shapes and sizes of the inclusions in the
models (because the potential shapes are limitless), as well
as to replace the low-density inclusions with actual cracks
(zero density) to simulate actual damage in concrete.
Additionally, the use of different frequencies should shed
light on the strongly dispersive behavior observed experimentally.
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